dc.creatorLara Rodríguez, Juan Sebastián
dc.creatorTosi Furtado, André
dc.creatorAltimiras Martin, Aleix
dc.date.accessioned2018-06-27T21:22:19Z
dc.date.available2018-06-27T21:22:19Z
dc.date.created2018-06-27T21:22:19Z
dc.date.issued2018-02-06
dc.identifierLara Rodríguez, J. S., Tosi Furtado, A. & Altimiras Martin, . (2018). Materias críticas y complejidad económica en América Latina. Revista Apuntes del CENES, 37(65), 15-51. DOI: https://doi.org/10.19053/01203053.v37.n65.2018.5426. http://repositorio.uptc.edu.co/handle/001/2067
dc.identifier0120-3053
dc.identifier2256-5779 En línea
dc.identifierhttps://repositorio.uptc.edu.co/handle/001/2067
dc.identifier10.19053/01203053.v37.n65.2018.5426
dc.description.abstractThere are minerals that boost economic growth and which are essential for the development of sustainable technologies. These critical raw materials (CRMs) were determined by models created for complex economies. This paper aims to examine the mineral policies regarding CRMs of the main Latin-American economies, and the role of their respective National Innovation Systems (NIS) in the pursuit of greater economic complexity. This is achieved through a comparative assessment method applied to the mineral policies of the principal nations of the region —Brazil, Mexico, Argentina, Colombia and Chile. In this way, we found that due to the simplicity of these economies, as well as mineral policies that disregard their respective NIS, the increase of the economic complexity of the states in question is compromised. This is characterized by the exiguous value added through the interaction of knowledge and capabilities regarding their mineral resources and industry
dc.description.abstractExisten minerales dinamizadores de crecimiento económico, fundamentales para el desarrollo de tecnologías sostenibles. Estas materias primas críticas (MPC) son determinadas por modelos creados para economías complejas. El objetivo de este artículo es examinar las políticas minerales de materias primas críticas en las principales economías de América Latina, y el papel de sus respectivos sistemas nacionales de innovación (SNI), en búsqueda de mayor complejidad económica, mediante un método de evaluación comparativo aplicado a la política mineral de las principales naciones de esta zona —Brasil, México, Argentina, Colombia y Chile—. Descubrimos que debido a la simplicidad de estas economías y de políticas minerales que desestiman sus respectivos sistemas nacionales de innovación, se compromete el aumento de la complejidad económica de los Estados en cuestión, la cual se caracteriza por la precaria adición de valor mediante la interacción de conocimiento y capacidades en relación con sus recursos minerales e industria.
dc.description.abstractExistem minérios que impulsam o crescimento econômico e são fundamentais para o desenvolvimento de tecnologias sustentáveis, estas Matérias Primas Criticas (MPC) são determinadas mediante modelos criados pelas economias complexas. Portanto, o artigo tem por objetivo examinar as políticas minerais de MPC nas economias Latino Americanas de destaque, e o papel do respetivo Sistema Nacional de Inovação (SNI) na procura de uma maior complexidade econômica. Isto, por meio de um método de avaliação comparativa de política mineral, aplicado nos principais países da América Latina -Brasil, México, Argentina, Colômbia e Chile-. Desta maneira a gente descobriu que devido à simplicidade destas economias, e de políticas minerais que desestimam seus SNI, há um comprometimento do aumento da complexidade econômica dos países estudados. A qual é caraterizada pela precária adição de valor através da interação do conhecimento e capacidades, em torno dos recursos minerais e a indústria.
dc.languagedeu
dc.publisherUniversidad Pedagógica y Tecnológica de Colombia
dc.relationAbramczyk, H. (2005). Introduction to Laser Spectroscopy (First). Amsterdam: Elsevier B.V. http://doi.org/10.1016/B978-044451662-6/50014-9
dc.relationAltimiras-Martin, A. (2014). Analysing the Structure of the Economy Using Physical Input–Output Tables. Economic Systems Research, 26(4), 463– 485. http://doi.org/10.1080/09535314.2014.950637
dc.relationAlves, A. R., & Coutinho, A. dos R. (2015). The Evolution of the Niobium Production in Brazil. Materials Research, 18(1), 106–112. http://doi. org/10.1590/1516-1439.276414
dc.relationAuty, R. M. (2003). Natural resources, development models and sustainable development. In International Institute for Environment and Development, Environmental Economics Programe (pp. 0–25). Stevenage, UK: Earthprint Limited. Retrieved from http://eprints.lancs.ac.uk/9356/
dc.relationAuty, R. M. (2007). The resources curse and sustainable development. In G. Atkinson, S. Dietz, & E. Neumayer (Eds.), Handbook of Sustainable Development (Vol. I, pp. 207–219). Cheltenham, UK and Northampton, MA, USA: Edward Elgar Publishing.
dc.relationBabar, I. M., Sabran, M. B. S., Jusoh, Z., Ahmad, H., Harun, S. W., Halder, A., Bhadra, S. K. (2014). Double-clad thulium/ytterbium co-doped octagonal-shaped fibre for fibre laser applications 1. Ukrainian Journal of Physical Optics, 15(4), 173–184.
dc.relationBecker, P. C., Olsson, N. A., & Simpson, J. R. (1999). Introduction. In Erbium-Doped Fiber Amplifiers (First, pp. 1–11). London, GBR: Academic Press. http://doi.org/10.1016/B978-012084590-3/50003-X
dc.relationBescher, E., Robson, S. R., Mackenzie, J. D., Patt, B., Iwanczyk, J., & Hoffman, E. J. (2000). New lutetium silicate scintillators. Journal of Sol-Gel Science and Technology, 19(3), 325–328. http://doi.org/10.1023/A:1008785616233
dc.relationBritish Geological Survey. (2011). Tungsten profile. Nottingham. Retrieved from www.MineralsUK.com
dc.relationBrown, A. (2013). By the numbers: critical materials--weak spot for the U.S.? Mechanical Engineering [Serial Online], 135(5), 28–29. Retrieved from Business Source Complete, Ipswich, MA. Accessed July 2, 2014.
dc.relationBusch, J., Steinberger, J. K., Dawson, D. a, Purnell, P., & Roelich, K. (2014). Managing critical materials with a technology-specific stocks and flows model. Environmental Science & Technology, 48(2), 1298–305. http://doi. org/10.1021/es404877u
dc.relationChakhmouradian, A. R., Smith, M. P., & Kynicky, J. (2015). From “strategic” tungsten to “green” neodymium: A century of critical metals at a glance. Ore Geology Reviews, 64, 455–458. http://doi.org/10.1016/j.oregeorev.2014.06.008
dc.relationComisión Chilena del Cobre. (2014). Identificación de insumos críticos para el desarrollo de la minería en Chile. Santiago de Chile. Retrieved from http:// www.cochilco.cl/descargas/estudios/informes/Insumos Críticos/Estudio_ de_Insumos_Criticos_en_la_Mineria_Chilena_VF.pdf
dc.relationCsikósoya, A., Ćulkoya, K., & Antośoya, M. (2013). Magnesite industry in the Slovak Republic. Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 29(3). http://doi.org/10.2478/gospo-2013-0028
dc.relationDosi, G. (1982). Technological paradigsm and tecnological trajectories. Research Policy, 11, 147–162. http://doi.org/https://doi.org/10.1016/0048- 7333(82)90016-6
dc.relationDu, X., & Graedel, T. E. (2013). Uncovering the end uses of the rare earth elements. The Science of the Total Environment, 461–462, 781–4. http://doi. org/10.1016/j.scitotenv.2013.02.099
dc.relationEngholm, M., & Norin, L. (2008). Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass. Optics Express, 16, 1260–1268. http://doi.org/10.1364/OE.16.001260
dc.relationErdmann, L., & Graedel, T. E. (2011). Criticality of non-fuel minerals: A review of major approaches and analyses. Environmental Science and Technology, 45, 7620–7630. http://doi.org/10.1021/es200563g
dc.relationEuropean Commission. (2014). Report on critical raw materials for the EU, Report of the Ad hoc Working Group on defining critical raw materials. Brussels. Retrieved from http://ec.europa.eu/enterprise/policies/raw-materials/ files/docs/crm-report-on-critical-raw-materials_en.pdf
dc.relationFromer, N. a., & Diallo, M. S. (2013). Nanotechnology and clean energy: sustainable utilization and supply of critical materials. Journal of Nanoparticle Research, 15(11), 1–15. http://doi.org/10.1007/s11051-013-2011-9
dc.relationGlöser, S., Tercero, L., Gandenberger, C., & Faulstich, M. (2015). Raw material criticality in the context of classical risk assessment. Resources Policy, 44, 35–46.
dc.relationGoe, M., & Gaustad, G. (2014). Identifying critical materials for photovoltaics in the US: A multi-metric approach. Applied Energy, 123, 387–396. http:// doi.org/10.1016/j.apenergy.2014.01.025
dc.relationGoonan, T. (2011). Rare Earth Elements — End Use and Recyclability. Reston, Virginia: U.S. Geological Survey Scientific Investigations Report 2011– 5094. Retrieved from http://pubs.usgs.gov/sir/2011/5094/
dc.relationGraedel, T. E., Barr, R., Chandler, C., Chase, T., Choi, J., Christoffersen, L., … Zhu, C. (2012). Methodology of metal criticality determination. Environmental Science and Technology, 46(2), 1063–1070. http://doi.org/10.1021/ es203534z
dc.relationGranda, M., Blanco, C., Alvarez, P., Patrick, J. W., & Menéndez, R. (2014). Chemicals from coal coking. Chemical Reviews, 114(3), 1608–1636. http://doi.org/10.1021/cr400256y
dc.relationGu, Y. F., Harada, H., & Ro, Y. (2004). Chromium and chromium-based alloys: Problems and possibilities for high-temperature service. Jom, 56(9), 28– 33. http://doi.org/10.1007/s11837-004-0197-0
dc.relationGupta, V. K., Jain, R., Hamdan, a. J., Agarwal, S., & Bharti, A. K. (2010). A novel ion selective sensor for promethium determination. Analytica Chimica Acta, 681(1–2), 27–32. http://doi.org/10.1016/j.aca.2010.09.037
dc.relationHalme, K., Piirainen, K., Vekinis, G., Ernst-Udo, S., & Viljamaa, K. (2012). Substitutionability of Critical Raw Materials. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki. Brussels: European Union. http://doi.org/10.2861/53633
dc.relationHartwick, J. M. (1977). Intergenerational Equity and the Investing of Rents from Exhaustible Resources. American Economic Association, 67(5), 972–974. Retrieved from http://www.jstor.org/stable/1828079
dc.relationHausmann, R., Hidalgo, C. a., Bustos, S., Coscia, M., Chung, S., Jimenez, J., … Yildirim, M. (2014). The Atlas of Economic Complexity: Mapping Paths to Prosperity (2014th ed.). Cambridge, MA, USA: Harvard University and Masachussetts Institute of Technology. Retrieved from http://atlas.cid.harvard.edu/rankings/
dc.relationHein, J. R., Mizell, K., Koschinsky, A., & Conrad, T. a. (2013). Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geology Reviews, 51, 1–14. http://doi.org/10.1016/j.oregeorev.2012.12.001
dc.relationHensel, N. D. (2011). Economic Challenges in the Clean Energy Supply Chain: The Market for Rare Earth Minerals and Other Critical Inputs. Business Economics, 46(3), 171–184. http://doi.org/10.1057/be.2011.17
dc.relationHidalgo, C. a, & Hausmann, R. (2009). The building blocks of economic complexity. Proceedings of the National Academy of Sciences of the United States of America, 106(26), 10570–10575. http://doi.org/10.1073/ pnas.0900943106
dc.relationHoppstock, K., & Sures, B. (2004). Platinum-Group Metals. In E. Merian, M. Anke, & M. Stoeppler (Eds.), Elements and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance (pp. 1047–1086). Weinheim, Germany: WILEY-VCH Verlag GmbH&Co. KGaA. http://doi. org/10.1002/9783527619634.ch41
dc.relationHort, N., Mathaudhu, S., Ncclameggham, N., & Alderman, M. (2013). Magnesium Technology 2013. (M. & M. S. (TMS) Magnesium Committee of the Light Metals Division of The Minerals, Ed.). San Antonio: Wiley.
dc.relationKarl, T. L. (1997). Review The Paradox of Plenty: Oil Booms and Petro-States. Berkeley: University of California Press.
dc.relationKöhler, A. R., Bakker, C., & Peck, D. (2013). Critical materials: a reason for sustainable education of industrial designers and engineers. European Journal of Engineering Education, 38(4), 441–451. http://doi.org/10.1080/030437 97.2013.796341
dc.relationLara-Rodríguez, J. S., & Bermúdez, J. I. (2011). Perspectiva de la política de innovación y su monitoreo en la Unión Europea , 2010-2020. Finanzas Y Política Económica, 3(2), 105–126. Retrieved from http://ideas.repec. org/a/col/000443/009853.html
dc.relationLara-Rodríguez, J. S., Rojas, C. A., & Martínez, J. A. (2015). Evolución organizacional : inducción socio-biológica para el entendimiento de la metáfora. AD-Minister, 26(enero-junio), 101–122. http://doi.org/10.17230/ad-minister.26.5
dc.relationLara-Rodríguez, J. S., Naranjo-Merchán, W., & Manosalva, S. R. (2017). Formación de capacidades para la formalización minera en Colombia: Un estudio de investigación acción. Cuadernos Del CENDES, 34(94), 97–126. Extraído de http://www.redalyc.org/pdf/403/40353171006.pdf
dc.relationLundvall, B. Å., Vang, J., Chaminade, J., & Chaminade, C. (2009). Innovation system research and developing countries. In B. Å. Lundvall, K. J. Joseph, C. Chaminade, & J. Vang (Eds.), Handbook of Innovation Systems and Developing Countries, Building Domestic Capabilities in a Global Setting (pp. 1–30). Cheltenham, UK and Northampton, MA, USA: Edward Elgar Publishing
dc.relationMassari, S., & Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38(1), 36–43. http://doi.org/10.1016/j.resourpol.2012.07.001
dc.relationMcNeil, D. (2004). Beryllium. London, GBR. Retrieved from http://beryllium. eu/resources/Critical Material and Market Forces Literature/Beryllium Production and Outlook Roskill Mineral Sevices.pdf
dc.relationMelcher, F., & Buchholz, P. (2014). Germanium. In G. Gunn (Ed.), Critical Metals Handbook (First, pp. 177–203). Nottingham. UK: John Wiley & Sons. http://doi.org/10.1002/9781118755341.ch8
dc.relationMiller, M. (2010). Fluorspar. Mining Engineering, 62(6), 48–49. Retrieved from http://search.proquest.com/docview/578164423?accountid=8113
dc.relationMinistério de Minas e Energia. (2011). Plano Nacional de Mineração 2030. Geologia, Mineração e Transformação Mineral. Brasilia. Retrieved from http:// www.mme.gov.br/documents/1138775/1732821/Book_PNM_2030_2. pdf/f7cc76c1-2d3b-4490-9d45-d725801c3522
dc.relationMinisterio de Minas y Energía. (2012). Resolución número 18 0102 de 30 enero de 2012 “Por la cual se determinan unos minerales de interés estratégico para el país.” Bogotá D.C.: República de Colombia. Retrieved from http:// www.minminas.gov.co/documents/10180//23517//20337-10498.pdf
dc.relationMinisterio de Minería. (2015). Ministerio de Minería - Cuenta Pública. Santiago de Chile. Retrieved from http://www.gob.cl/cuenta-publica/2015/sectorial/2015_sectorial_ministerio-mineria.pdf
dc.relationMishra, B., & Termsuksawad, P. (1999). Niobium. Review of Extraction, Processing, Propierties and Aplications of Reactive Metals, 83–134. http://doi. org/DOI: 10.1002/9781118788417.ch3
dc.relationNational Research Council of the National Academies. (2008). Minerals, critical minerals, and the U. S. economy. Washington, D.C.: National Academies Press : Washington, DC, United States. Retrieved from www.nap.edu
dc.relationNelson, R. R., & Winter, S. G. (1982). An evolutionary Theory of Economic Change. Cambridge, MA, USA: Harvard University Press.
dc.relationPlatias, S., Vatalis, K. I., & Charalabidis, G. (2013). Innovative Processing Techniques for the Production of a Critical Raw Material the High Purity Quartz. Procedia Economics and Finance, 5(13), 597–604. http://doi.org/10.1016/ S2212-5671(13)00070-1
dc.relationPloeg, F. Van Der. (2011). Natural Resources: Curse or Blessing? Journal of Economic Literature, 49(2), 366–420. http://doi.org/10.1257/jel.49.2.366
dc.relationPrograma Nacional de Minería Alta Ley. (2016). Desde el cobre a la innovación. Roadmap Tecnológico 2015-2035. (Fundación Chile, Ed.). Santiago de Chile: A Impresores.
dc.relationRepública Argentina. (1887). Ley 1919 Código de Minería. Buenos Aires: Senado y Camara de Diputados. Retrieved from http://wp.cedha.net/ wp-content/uploads/2011/10/ley-minera-argentina.pdfSchwarz-Schampera, U. (2014). Indium. In G. Gunn (Ed.), Critical Metals handbook (First, Vol. 11, pp. 204–229). Nottingham. UK: John Wiley & Sons. http://doi.org/10.1002/9781118755341.ch9
dc.relationSecretaría de Economía. (2014). Programa de Desarrollo Minero 2013-2018. Ciudad de México. Retrieved from http://www.dof.gob.mx/nota_detalle. php?codigo=5344070&fecha=09/0
dc.relationSecretaría de Política Económica y Planificación del Desarrollo. (2016). Informes de cadenas de valor: Minería Metalífera y Rocas de Aplicación. Buenos Aires. Retrieved from http://www.economia.gob.ar/peconomica/ docs/ficha_litio_dic_2011.pdf
dc.relationSenate Committee on Interior and Insular Affairs. (1954). Accessibility of strategic and critical materials to U.S. in time of war and for expanding economy. Accessibility of Strategic and Critical Materials to the United States in Time of War and for Our Expanding Economy. Report of the Committee on Interior and Insular Affairs Made by Its Minerals, Materials, and Fuels Economic Subcommittee pursuant to S. Re. Retrieved from http:// ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edslns&AN=LNSD80B819B-90F7F8E3&lang=es&site=e ds-live
dc.relationSievers, H., Buijs, B., & Tercero Espinoza, L. a. (2012). Limits to the critical raw materials approach. Proceedings of the ICE - Waste and Resource Management, 165(4), 201–208. http://doi.org/10.1680/warm.12.00010
dc.relationSlowinski, G., Latimer, D., & Mehlman, S. (2013). Research-on-Research: Dealing with Shortages of Critical Materials. Research-Technology Management, 56(5), 18–24. http://doi.org/10.5437/08956308X5605139
dc.relationThe World Bank. (2013). World Development Indicators: Science and technology. Washington, DC, USA: World Bank Group. Retrieved from http://wdi. worldbank.org/table/5.13
dc.relationThe World Bank. (2014). World Bank GDP Deflator. Retrieved from http://data. worldbank.org/indicator/NY.GDP.DEFL.KD.ZG)
dc.relationU.S. Geological Survey. (2015). Mineral Commodity Summaries 2015. Reston, Virginia. Retrieved from http://minerals.usgs.gov/minerals/pubs/ mcs/2015/mcs2015.pdf
dc.relationUnidad de Planeación Minero Energética. (2013). Plan Nacional De Desarrollo Minero 2010 - 2014. Bogotá D.C. Retrieved from http://www.upme.gov. co/Docs/pndm/2013/PNDM2014.pdf
dc.relationVan Gosen, B., Verplanck, P., Long, K., Gambogi, J., Joseph, & Seal. (2014). The Rare-Earth Elements — Vital to Modern Technologies and Lifestyles. U.S. Geological Survey Fact Sheet 2014–3078. Reston, Virginia: U.S. Geological Survey Fact Sheet 2014–3078. http://doi.org/http://dx.doi.org/10.3133/ fs20143078
dc.relationWorld Commission on Environment and Development. (1987). Report of the World Commission on Environment and Development: Our Common Future (The Brundtland Report). Medicine, Conflict and Survival. http://doi. org/10.1080/07488008808408783
dc.relationWübbeke, J. (2013). Rare earth elements in China: Policies and narratives of reinventing an industry. Resources Policy, 38(3), 1–11. http://doi.org/10.1016/j. resourpol.2013.05.005
dc.relationZiemann, S., Grunwald, A., Schebek, L., Müller, D. b., & Weil, M. (2013). The future of mobility and its critical raw materials. Revue de Métallurgie, 110(1), 47–54. http://doi.org/10.1051/metal/2013052
dc.relationZimmermann, T., & Gößling-Reisemann, S. (2013). Critical materials and dissipative losses: a screening study. The Science of the Total Environment, 461–462, 774–80. http://doi.org/10.1016/j.scitotenv.2013.05.040
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsCopyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia
dc.sourcehttps://revistas.uptc.edu.co/index.php/cenes/article/view/5426/6037
dc.titleMaterias primas críticas y complejidad económica en América Latina
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución