dc.contributorHerrera Martínez, Yimy (Director tesis)
dc.creatorMeneses Ortegón, Luz Andrea
dc.date.accessioned2018-04-23T20:29:49Z
dc.date.available2018-04-23T20:29:49Z
dc.date.created2018-04-23T20:29:49Z
dc.date.issued2013
dc.identifierMeneses Ortegón, L. A. (2013). Bacterioplancton de tres lagunas de alta montaña tropical andina en el departamento de Boyacá, Colombia. (Tesis de Maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2008
dc.identifierhttps://repositorio.uptc.edu.co/handle/001/2008
dc.description.abstractThe traditional food chain is a direct interaction between predators and preys, where a top predator can positively affect basal species due to the control the predators over the other preys. In that section, a part of the energy in one level to another is believed get lost however thank to the detritivore food chain concept and "microbial ring", have been reported that is recycled and reincorporated into the cycle of matter and energy by bacteria in three steps: (1) Processing and decomposition of organic matter, (2) remineralization of nutrients and (3) other food trophic levels. Despite its importance, little is known of its structure in high Andean tropical ecosystems, for this reason, the aim of this study was to evaluate the bacterioplanctónic variability in Andean lakes of Boyaca in three climatic seasons. Triplicate samples were taken in three zones on each lake, surface and coastal background in Laguna Cristalina, Negra and Verde-Boyacá and determined biomass, abundance and bacterial forms and physico-chemical variables (nitrites, nitrates, phosphates, organic matter, temperature, pH, conductivity, oxygen) and chlorophyll α. We found that bacterial abundance and biomass are within the range for oligotrophic. Bacillary forms are most common in these ecosystems and Chlorophyll α is important part to explain the structure of bacterioplankton by the correlation of input of organic matter by phytoplankton and nutrient remineralization by bacteria. It was concluded that phosphorus could be a limiting nutrient from the bacterioplankton.
dc.description.abstractLa cadena trófica tradicional es una interacción directa entre depredadores y presas, en donde un depredador tope puede afectar positivamente a las especies basales ya que controla los depredadores de estos. En ésta, una parte de la energía se creía perdida de un nivel a otro, sin embargo, gracias al concepto de cadena trófica detritívora y “bucle microbiano”, se describió que es reciclada y reincorporada al ciclo de materia y energía, a través de las bacterias en tres pasos: procesamiento y descomposición de la materia orgánica, remineralización de nutrientes y alimento de otros niveles tróficos. A pesar de su importancia es poco lo que se conoce de su estructuración en los ecosistemas tropicales altoandinos, por esta razón, el objetivo de este trabajo fue evaluar la variabilidad bacterioplanctónica en lagos altoandinos de Boyacá en tres épocas climáticas. Para lo cual se tomaron muestras triplicadas en tres zonas, superficie, fondo y litoral, en las Lagunas Cristalina, Negra y Verde de Boyacá y se determinó la biomasa, abundancia y formas bacterianas, así como variables físico-químicas (nitritos, nitratos, fosfatos, materia orgánica, temperatura, pH, conductividad, oxígeno) y clorofila α. Se encontró que la abundancia y biomasa bacteriana están dentro del rango establecido para lagos oligotróficos y las formas bacilares son las más comunes en estos ecosistemas. La clorofila α es importante para explicar la estructuración del bacterioplancton gracias a la correlación que existe de aporte de materia orgánica por parte del fitoplancton y remineralización de nutrientes por parte de las bacterias. Se concluyó que el fósforo puede ser un nutriente limitante para el bacterioplancton.
dc.languagespa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombia
dc.publisherFacultad de Ciencias Básicas
dc.publisherMaestría en Ciencias Biológicas
dc.relationAbarzúa, M., S. Basualto, and H. Urrutia. 1995. Relación entre la abundancia y biomasa de fitoplancton y bacterioplancton heterotrófico en aguas superficiales del Golfo de Arauco, Chile. Investigaciones Marinas, Valparaíso 23:67-74.
dc.relationAmerican Public Health Association. 1999. Standard methods for the examination of water and wastewater. Lenore S. Clescerl, Arnold E. Greenberg, Andrew D. Eaton edition, Washington, DC.
dc.relationAnesio, A. M., P. C. Abreu, and F. de Assis Esteves. 1997. Influence of the Hydrological Cycle on the Bacterioplankton of an Impacted Clear Water Amazonian Lake. Microbial Ecology 34:66-73.
dc.relationAraújo, M. F. F. d. and M. J. L. Godinho. 2008. Seasonal and spatial distribution of Bacterioplankton in a fluvial-lagunar system of a tropical region: density, biomass, cellular volume and morphologic variation. Brazilian Archives of Biology and Technology 51:203-212.
dc.relationAzam, F., T. Fenchel, J. Field, J. Gray, L. Meyer-Reil, and F. Thingstad. 1983. The ecological role of water-column microbes in the sea. Marine ecology progress series. Oldendorf 10:257-263.
dc.relationBaines, S. B. and M. L. Pace. 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnology and Oceanography:1078-1090.
dc.relationBarragán, R., A. Canosa, and J. P. Niño. 2009. Bacterioplancton en Bahía Gaira, mar Caribe (Colombia): comparación de la variabilidad en abundancia y biomasa bacteriana durante diferentes períodos. Boletín de Investigaciones Marinas y Costeras 38:75-90.
dc.relationBelgrano, A., U. M. Scharler, J. Dunne, and R. E. Ulanowicz. 2005. Aquatic Food Webs, An Ecosystem Approach. Belgrano, Andrea, Scharler, Ursula M. Dunne, Jennifer Ulanowicz, Robert E. edition, United States.
dc.relationBertoni, R., C. Callieri, and A. Pugnetti. 1998. Dinamica del carbonio organico nel Lago di Cadagno e attività microbiche nel mixolimnio. Documenta dell'Istituto Italiano di Idrobiologia 63:105-120.
dc.relationBiddanda, B., M. Ogdahl, and J. Cotner. 2001. Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. Limnology and Oceanography 46:730-739.
dc.relationBillen, G., P. Servais, and S. Becquevort. 1990. Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: bottom-up or top-down control? Hydrobiologia 207:37-42.
dc.relationWetzel, R. G. 1983. Limnology. Saunders.
dc.relationWhite, P. A., J. Kalff, J. B. Rasmussen, and J. M. Gasol. 1991. The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microbial Ecology 21:99-118.
dc.relationWille, A., B. Sonntag, B. Sattler, and R. Psenner. 1999. Abundance, biomass and size-structure of the microbial assemblage in the high mountain lake Gossenkollesee (Tyrol, Austria) during the ice-free period. Journal of Limnology 58:117-126.
dc.relationWilliams, P. l. B. 1981. Incorporation of microheterotrophic processes into the classical paradigm of the plankton food web. Pages 1-28 in G. e. a. Rheinheimer, editor. Lower Organisms and their Role in the Food Web: Proceedings of the 15th European Marine Biology Symposium, Kiel, Damp 2000, Federal Republic of Germany (September 29-October 3, 1980). Kieler Meeresforschungen.
dc.relationWork, K., K. Havens, B. Sharfstein, and T. East. 2005. How important is bacterial carbon to planktonic grazers in a turbid, subtropical lake? Journal of plankton research 27:357-372.
dc.relationWright, R. T., R. B. Coffin, and M. E. Lebo. 1987. Dynamics of planktonic bacteria and heterotrophic microflagellates in the Parker Estuary, northern Massachusetts. Continental shelf research 7:1383-1397.
dc.relationBird, D. F. and J. Kalff. 1984. Empirical Relationships between Bacterial Abundance and Chlorophyll Concentration in Fresh and Marine Waters. Canadian Journal of Fisheries and Aquatic Sciences 41:1015-1023.
dc.relationBjornsen, P. and J. Kuparinen. 1991. Determination of bacterioplankton biomass, net production and growth efficiency in the Southern Ocean. Marine Ecology Progress Series 71:185-194.
dc.relationBjornsen, P. K. 1986. Automatic determination of bacterioplankton biomass by image analysis. Applied and Environmental Microbiology 51:1199-1204.
dc.relationBoteva, S., I. Traykov, A. Kenarova, and V. Bogoev. 2010. Abundance and spatial dynamics of bacterioplankton in the Seven Rila Lakes, Bulgaria. Chinese Journal of Oceanology and Limnology 28:451-458.
dc.relationBoulion, V. 2012. Assimilation and turnover time of phosphorus by size fractions of microplankton in lakes of different types. Inland water biology 5:304-309.
dc.relationBrett, M. T., F. S. Lubnow, M. Villar-Argaiz, A. Müller-Solger, and C. R. Goldman. 1999. Nutrient control of bacterioplankton and phytoplankton dynamics. Aquatic Ecology 33:135-145.
dc.relationBrönmark, C. and L.-A. Hansson. 2005. The biology of lakes and Ponds. Oxford University Press Inc. edition, New York.
dc.relationBurns, C. W. and L. M. Galbraith. 2007. Relating planktonic microbial food web structure in lentic freshwater ecosystems to water quality and land use. Journal of plankton research 29:127-139.
dc.relationBurns, C. W. and M. Schallenberg. 1996. Relative impacts of copepods, cladocerans and nutrients on the microbial food web of a mesotrophic lake. Journal of plankton research 18:683-714.
dc.relationBurns, C. W. and M. Schallenberg. 1998. Impacts of nutrients and zooplankton on the microbial food web of an ultra-oligotrophic lake. Journal of plankton research 20:1501-1525.
dc.relationCallieri, C. and R. Bertoni. 1999. Organic carbon and microbial food web assemblages in an oligotrophic alpine lake. Journal of Limnology 58:136-143.
dc.relationCanosa, A. and G. Pinilla. 2001. Total bacterial populations in three lentic water bodies of the Colombian Andes using the epifluorescence technique. Lakes & Reservoirs: Research & Management 6:169-174.
dc.relationCanosa, A. and G. Pinilla. 2007. Relaciones entre las abundancias del bacterioplancton y del fitoplancton en tres ecosistemas lénticos de los Andes Colombianos. Revista de Biología Tropical 55:135-146.
dc.relationCaraballo-Gracia, P. R. 2010. O papel da alça microbiana na dinâmica trofica de um lago de várzea na Amazônia central. Instituto Nacional de Pesquisas da Amazônia, Manaus - Amazonas.
dc.relationCaraballo, P. 2009. Uso de isótopos estables de carbono y nitrógeno para estudios de ecología acuática. Boletín Científico CIOH 27:176-187.
dc.relationCarpenter, S. R., J. F. Kitchell, and J. R. Hodgson. 1985. Cascading trophic interactions and lake productivity. Bioscience 35:634-639.
dc.relationCastillo, M. M. 2000. Influence of hydrological seasonality on bacterioplankton in two neotropical floodplain lakes. Hydrobiologia 437:57-69.
dc.relationCatalan, J., L. Camarero, M. Felip, S. Pla, M. Ventura, T. Buchaca, F. Bartumeus, G. de Mendoza, A. Miró, and E. O. Casamayor. 2006. High mountain lakes: extreme habitats and witnesses of environmental changes. Limnetica 25:551-584.
dc.relationĆirić, S., B. Milošević, Z. Spasić, J. Knežević, and S. Anđelković. 2012. Seasonal and Vertical Distributions of Bacterioplankton in Lake Ćelije, Serbia. University of Priština, Republic of Macedonia.
dc.relationCole, J. J. 1999. Aquatic Microbiology for Ecosystem Scientists: New and Recycled Paradigms in Ecological Microbiology. Ecosystems 2:215-225.
dc.relationCole, J. J., S. Findlay, and M. L. Pace. 1988. Bacterial production in fresh and saltwater ecosystems: A cross-system overview. Marine Ecology Progress Series 43:1-10.
dc.relationCole, J. J., M. L. Pace, N. F. Caraco, and G. S. Steinhart. 1993. Bacterial biomass and cell size distributions in lakes: More and larger cells in anoxic waters. Limnology and Oceanography:1627-1632.
dc.relationCoveney, M. F. and R. G. Wetzel. 1992. Effects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures. Applied and Environmental Microbiology 58:150-156.
dc.relationCoveney, M. F. and R. G. Wetzel. 1995. Biomass, production, and specific growth rate of bacterioplankton and coupling to phytoplankton in an oligotrophic lake. Limnology and Oceanography:1187-1200.
dc.relationCovich, A. P. 2006. Protección de la biodiversidad del bentos para asegurar procesamiento de materia orgánica y servicios del ecosistema: Importancia de los invertebrados fragmentadores de redes de drenaje. ECOTROPICOS 19:109-127.
dc.relationCurrie, D. J. 1990. Large-scale variability and interactions among phytoplankton, bacterioplankton, and phosphorus. Limnology and Oceanography 35:1437-1455.
dc.relationCurrie, D. J. and J. Kalff. 1984. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnology and Oceanography:298-310.
dc.relationDel Giorgio, P. A., J. J. Cole, and A. Cimbleris. 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385:148-151.
dc.relationDufour, P. and J. P. Torréton. 1996. Bottom-up and top-down control of bacterioplankton from eutrophic to oligotrophic sites in the tropical northeastern Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers 43:1305-1320.
dc.relationElser, J., T. Chrzanowski, R. Sterner, J. Schampel, and D. Foster. 1995. Elemental ratios and the uptake and release of nutrients by phytoplankton and bacteria in three lakes of the Canadian Shield. Microbial Ecology 29:145-162.
dc.relationFelip, M., F. Bartumeus, S. Halac, and J. Catalan. 1999. Microbial plankton assemblages, composition and biomass, during two ice-free periods in a deep high mountain lake (Estany Redó, Pyrenees). Journal of Limnology 58:193-202.
dc.relationFenchel, T. 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Marine Ecology Progress Series 9:35.
dc.relationFenchel, T. 2008. The microbial loop - 25 years later. Journal of Experimental Marine Biology and Ecology 366:99-103.
dc.relationFrioni, L. 1999. Procesos microbianos. Editorial de la Fundación Universidad Nacional de Río Cuarto.
dc.relationFujii, M., H. Kojima, T. Iwata, J. Urabe, and M. Fukui. 2012. Dissolved Organic Carbon as Major Environmental Factor Affecting Bacterioplankton Communities in Mountain Lakes of Eastern Japan. Microbial Ecology 63:496-508.
dc.relationGocke, K., C. Hernández, H. Giesenhagen, and H. G. Hoppe. 2004. Seasonal variations of bacterial abundance and biomass and their relation to phytoplankton in the hypertrophic tropical lagoon Ciénaga Grande de Santa Marta, Colombia. Journal of plankton research 26:1429-1439.
dc.relationGonzalez, J. M., E. B. Sherr, and B. F. Sherr. 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Applied and Environmental Microbiology 56:583-589.
dc.relationGuillemette, F. and P. A. del Giorgio. 2012. Simultaneous consumption and production of fluorescent dissolved organic matter by lake bacterioplankton. Environmental Microbiology 14:1432-1443.
dc.relationHadas, O., R. Pinkas, C. Albert-Diez, J. Bloem, T. Cappenberg, and T. Berman. 1990. The effect of detrital addition on the development of nanoflagellates and bacteria in Lake Kinneret. Journal of plankton research 12:185-199.
dc.relationHerrera-Martínez, Y. 2012. Estudio ecológico de las comunidades hidrobiológicas en humedales altoandinos de la Cordillera Oriental de Colombia. Pages 1-109. Universidad Pedagógica y Tecnológica de Colombia, Colombia.
dc.relationHinder, B., I. Baur, K. Hanselmann, and F. Schanz. 1999. Microbial food web in an oligotrophic high mountain lake (Jori Lake III. Switzerland). Journal of Limnology 58:162-168.
dc.relationHobbie, J. E., R. J. Daley, and S. Jasper. 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology 33:1225-1228.
dc.relationHodgson, J. Y. S. 2005. A trophic cascade synthesis: review of top-down mechanisms regulating lake ecosystems. BIOS 76:137-144.
dc.relationIturriaga, R. and A. Zsolnay. 1983. Heterotrophic uptake and transformation of phytoplankton extracellular products. Botanica Marina 26:375-382.
dc.relationJones, J., B. Simon, and C. Cunningham. 1983. Bacterial uptake of algal extracellular products: An experimental approach. Journal of Applied Microbiology 54:355-365.
dc.relationKepner Jr, R. L. and J. R. Pratt. 1994. Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiology and Molecular Biology Reviews 58:603-615.
dc.relationKerner, M., H. Hohenberg, S. Ertl, M. Reckermann, and A. Spitzy. 2003. Self-organization of dissolved organic matter to micelle-like microparticles in river water. Nature 422:150-154.
dc.relationKirchman, D. 1994. The uptake of inorganic nutrients by heterotrophic bacteria. Microbial Ecology 28:255-271.
dc.relationKlug, J. L. 2005. Bacterial response to dissolved organic matter affects resource availability for algae. Canadian Journal of Fisheries and Aquatic Sciences 62:472-481.
dc.relationKritzberg, E. S., S. Langenheder, and E. S. Lindström. 2006. Influence of dissolved organic matter source on lake bacterioplankton structure and function–implications for seasonal dynamics of community composition. FEMS microbiology ecology 56:406-417.
dc.relationLindeman, R. L. 1942. The Trophic-Dynamic Aspect of Ecology. Ecology 23:399-417.
dc.relationLindström, E. S. 2000. Bacterioplankton community composition in five lakes differing in trophic status and humic content. Microbial Ecology 40:104-113.
dc.relationLogue, J. B., S. Langenheder, A. F. Andersson, S. Bertilsson, S. Drakare, A. Lanzén, and E. S. Lindström. 2012. Freshwater bacterioplankton richness in oligotrophic lakes depends on nutrient availability rather than on species–area relationships. The ISME Journal 6:1127-1136.
dc.relationLlames, M. E., P. A. del Giorgio, H. Zagarese, M. Ferraro, and I. Izaguirre. 2013. Alternative states drive the patterns in the bacterioplankton composition in shallow Pampean lakes (Argentina). Environmental Microbiology Reports 5:310-321.
dc.relationMalone, T. C. and H. W. Ducklow. 1990. Microbial biomass in the coastal plume of Chesapeake Bay: Phytoplankton-bacterioplankton relationships. Limnology and Oceanography 35:296-312.
dc.relationMcKnight, D. M., R. Harnish, R. L. Wershaw, J. S. Baron, and S. Schiff. 1997. Chemical Characteristics of Particulate, Colloidal, and Dissolved Organic Material in Loch Vale Watershed, Rocky Mountain National Park. Biogeochemistry 36:99-124.
dc.relationMedina-Sánchez, J. M., M. Villar-Argaiz, and P. Carrillo. 2004. Neither with nor without you: A complex algal control on bacterioplankton in a high mountain lake. Limnology and Oceanography 49:1722-1733.
dc.relationMorales, M., J. Otero, T. V. d. Hammen, A. Torres, C. Cadena, C. Pedraza, N. Rodríguez, C. Franco, J. C. Betancourth, É. Olaya, E. Posada, and L. Cárdenas. 2007. Atlas de páramos de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt edition, Bogotá, D.C.
dc.relationMorris, D. P. and W. M. Lewis Jr. 1992. Nutrient limitation of bacterioplankton growth in Lake Dillon, Colorado. Limnology and Oceanography 37(6):1179-1192.
dc.relationMuylaert, K., K. Van der Gucht, N. Vloemans, L. D. Meester, M. Gillis, and W. Vyverman. 2002. Relationship between bacterial community composition and bottom-up versus top-down variables in four eutrophic shallow lakes. Applied and Environmental Microbiology 68:4740-4750.
dc.relationNalewajko, C. and D. Lean. 1972. Growth and excretion in planktonic algae and bacteria. Journal of Phycology 8:361-366.
dc.relationNeal, C. o. 2001. Alkalinity measurements within natural waters: towards a standardised approach. Science of the Total Environment, The 265:99-113.
dc.relationNoges, T. 2009. Relationships between morphometry, geographic location and water quality parameters of European lakes. Hydrobiologia 633:33-43.
dc.relationNorland, S. 1993. The relationship between biomass and volume of bacteria Pages 303–307 in P. Kemp, B. Sherr, E. Sherr, and J. J. Cole, editors. Aquatic Microbial Ecology, Boca Raton.
dc.relationNusch, E. A. 1980. Comparison of different methods for chlorophyll and phaeopigments determination. Archiv fur Hydrobiologie Beih Ergebn Limnology 14:14-36.
dc.relationPace, M. and J. Cole. 1994. Comparative and experimental approaches to top-down and bottom-up regulation of bacteria. Microbial Ecology 28:181-193.
dc.relationPaganin, P., L. Chiarini, A. Bevivino, C. Dalmastri, A. Farcomeni, G. Izzo, A. Signorini, C. Varrone, and S. Tabacchioni. 2012. Vertical distribution of bacterioplankton in Lake Averno in relation to water chemistry. FEMS microbiology ecology 84:176-188.
dc.relationPinilla, G. A., A. Canosa, A. Vargas, M. Gavilán, and L. López. 2007. Acoplamiento entre las comunidades planctónicas de un lago amazónico de aguas claras (lago Boa, Colombia). Limnetica 26:53-65.
dc.relationPomeroy, L. R. 1974. The ocean's food web, a changing paradigm. Bioscience 24:499-504.
dc.relationPomeroy, L. R. and C. Darwin. 2007. The microbial loop. Oceanography 20:28-33.
dc.relationPosch, T., M. Loferer-Krößbacher, G. Gao, A. Alfreider, J. Pernthaler, and R. Psenner. 2001. Precision of bacterioplankton biomass determination: a comparison of two fluorescent dyes, and of allometric and linear volume-to-carbon conversion factors. Aquatic Microbial Ecology 25:55-63.
dc.relationPulido-Villena, E., I. Reche, and R. Morales-Baquero. 2008. Evidence of an atmospheric forcing on bacterioplankton and phytoplankton dynamics in a high mountain lake. Aquatic Sciences-Research Across Boundaries 70:1-9.
dc.relationReche, I. 1997. Efectos de la disponibilidad de Carbono Orgánico Fotodegradado y de Nutrientes Minerales sobre la Abundancia de bacterias activas. Limnetica 13:79-85.
dc.relationRejas, D., K. Muylaert, and L. De Meester. 2002. Primeros datos sobre la comunidad microbiana en una laguna de várzea en la Amazonía Boliviana (Laguna Bufeos, Cochabamba). Ecología en Bolivia 37:51-63.
dc.relationRheinheimer, G. 1978. Microbiología de Aguas, España.
dc.relationRodier, J., C. Geoffray, G. Kovacsik, J. Laporte, M. Plissier, J. Scheidhauer, J. Verneaux, and J. Vial. 1990. Análisis de las aguas. Omega edition, Barcelona.
dc.relationRodríguez, P., J. Ask, C. L. Hein, M. Jansson, and J. Karlsson. 2013. Benthic organic carbon release stimulates bacterioplankton production in a clear-water subarctic lake. Freshwater Science 32:176-182.
dc.relationRoldan-Pérez, G. 1992. Fundamentos de Limnología Neotropical. Editorial Universidad de Antioquia edition, Medellín, Colombia.
dc.relationRomina Schiaffino, M., F. Unrein, J. M. Gasol, R. Massana, V. BalaguÉ, and I. Izaguirre. 2011. Bacterial community structure in a latitudinal gradient of lakes: the roles of spatial versus environmental factors. Freshwater Biology 56:1973-1991.
dc.relationSalonen, K., J. Keskitalo, and L. Arvola. 1994. Effect of rapid pH changes on phyto- and bacterioplankton of clear and humic waters Archiv fur Hydrobiologie 129:425-441.
dc.relationSartory, D. and J. Grobbelaar. 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114:177-187.
dc.relationShiah, F. K. and H. W. Ducklow. 1994. Temperature and substrate regulation of bacterial abundance, production and specific growth rate in Chesapeake Bay, USA. Marine Ecology-Progress Series 103:297-297.
dc.relationSpears, B. M. and L. F. W. Lesack. 2006. Bacterioplankton production, abundance, and nutrient limitation among lakes of the Mackenzie Delta (western Canadian arctic). Canadian Journal of Fisheries and Aquatic Sciences 63:845-857.
dc.relationSundh, I. 1992. Biochemical Composition of Dissolved Organic Carbon Derived from Phytoplankton and Used by Heterotrophic Bacteria. Applied and Environmental Microbiology 58:2938-2947.
dc.relationVrede, K. 1996. Regulation of bacterioplankton production and biomass in an oligotrophic cleanvater lake—the importance of the phytoplankton community. Journal of plankton research 18:1009-1032.
dc.relationVrede, K., T. Vrede, A. Isaksson, and A. Karlsson. 1999. Effects of nutrients (phosphorous, nitrogen, and carbon) and zooplankton on bacterioplankton and phytoplankton-a seasonal study. Limnology and Oceanography 44:1616-1624.
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsCopyright (c) 2013 Universidad Pedagógica y Tecnológica de Colombia
dc.titleBacterioplancton de tres lagunas de alta montaña tropical andina en el departamento de Boyacá, Colombia
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución