dc.creatorVera Romero, Iván
dc.creatorHeard Wade, Christopher Lionel
dc.date.accessioned2019-02-18T21:37:29Z
dc.date.available2019-02-18T21:37:29Z
dc.date.created2019-02-18T21:37:29Z
dc.date.issued2017-07-04
dc.identifierVera Romero, I. & Heard Wade, C. L. Desarrollo de una aplicación para el cálculo de las propiedades de la mezcla amoniaco-agua. Revista Ingeniería, Investigación y Desarrollo, 17 (2), 58-72. DOI: https://doi.org/10.19053/1900771X.v17.n2.2017.7185. http://repositorio.uptc.edu.co/handle/001/2441
dc.identifier2422-4324
dc.identifierhttp://repositorio.uptc.edu.co/handle/001/2441
dc.identifier10.19053/1900771X.v17.n2.2017.7185
dc.description.abstractThe design and optimization of energy systems are very important today. Some of these systems use the ammonia-water mixture as working fluid, therefore, calculation of the thermodynamic properties becomes indispensable for its evaluation, design and optimization. In the present work an application has been developed in ExcelTM using Visual Basic (VBA) from a formulation based on free Gibbs Energy of Excess, in order to simulate different systems such as cooling, air conditioning, heat pumps, cogeneration and power cycles, without to acquire commercial simulators for this purpose. To validate this program, the results were compared with data obtained by the National Institute of Standards and Technology (NIST) software and experimental data reported in the literature.
dc.description.abstractEl diseño y la optimización de sistemas energéticos en la actualidad son de gran importancia. Algunos de estos sistemas emplean la mezcla amoniaco-agua como fluido de trabajo, por lo tanto, el cálculo de las propiedades termodinámicas se vuelve indispensable para su evaluación, diseño y optimización. En el presente trabajo se ha desarrollado una aplicación en ExcelTM empleando Visual Basic (VBA) a partir de una formulación basada en la energía de Gibbs de exceso, con la finalidad de simular diversos sistemas, como pueden ser de refrigeración, aire acondicionado, bombas de calor, cogeneración y ciclos de potencia, sin la necesidad de adquirir simuladores comerciales para tal propósito. Para validar dicho programa se han comparado los resultados con los datos arrojados por el software desarrollado por el National Institute of Standars and Technology (NIST) y datos experimentales reportados en literatura.
dc.languagespa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombia
dc.relationA. Rivera, J. Cerezo, R. Rivero, J. Cervantes y R. Best, “Single Stage and Double Absorption heat transformers used to recover energy in a distillation column of butane and pentane”, Int J of Energy Research, vol. 27, pp. 1279-1292, 2003. doi: https:// doi.org/10.1002/er.943
dc.relationA.I. Kalina, “Combined cycle and waste-heat recovery power systems based on a novel thermodynamic energy cycle utilizing low-temperature heat for power generation”, ASME paper n.º 83-JPGC-GT-3, 1983.
dc.relationS. Stecco y U. Desideri, “A thermodynamic analysis of the kalina cycles: comparisons, problems and perspectives”. Presentado en Gas Turbine and Aeroengine Congress and Exposition ASME, 1989.
dc.relationJ. Hernández, C. Heard y R. Rivero, “Exergoeconomic comparison of a combined cycle cogeneration system with absorption refrigeration turbine inlet air cooling. Presentado en 16th International Conference on Efficiency, Costs, Optimization, Simulation and Environmental impact of energy systems. Copenhagen, Denmark, ECOS, 2003.
dc.relationR. Tillner-Roth y G. Friend, “Survey and Assesment of available measurements on thermodynamic properties of the mixture {Water+Ammonia}”, J Phys Chem Ref Data vol. 27, n.º 1, pp. 45-61, 1998. doi: https://doi.org/10.1063/1.556014
dc.relationE. Thorin, “Thermophysical properties of ammonia- water mixtures for prediction of heat transfer areas in power cycles”, Int J Thermophys vol. 22, n.º 1, pp. 201-214, 2001. doi: https://doi.org/ 10.1023/A:1006745100278
dc.relationR.A. Macris, B.E. Eakin, R.T. Ellington y J. Huebler, “Physical and thermodynamic properties of ammonia- water mixtures” Research Bulletin Inst. of Gas Technology, n.º 14, 1964.
dc.relationR.T. Ellington, G. Kinst, R.E. Peck y J.F. Reed, “The absorption cooling process”, Research Bulletin Institute of Gas Technology, 1957.
dc.relationR. Tillner-Roth y G. Friend, “A Helmholtz free energy formulation of the thermodynamic properties of the mixture {Water+Ammonia}” J Phys Chem Ref Data, vol. 27, n.º 1, pp. 63-96, 1998. doi: https:// doi.org/10.1063/1.556015
dc.relationS.H. Risvi y R.A. Heidemann, “Vapor-Liquid equilibria in the ammonia-water system”, J Chem Eng Data, vol. 32, 183-191, 1987. doi: https://doi. org/10.1021/je00048a017
dc.relationA. Vidal, R. Best, R. Rivero y J. Cervantes, “Analysis of a combined power and refrigeration cycle by the exergy method”, Energy, vol. 31, pp. 3401- 3414, 2006. doi: https://doi.org/10.1016/j.energy. 2006.03.001
dc.relationJ. Pátek y J. Klomfar, “Simple functions for fast calculations of selected thermodynamic properties of the ammonia-water system”, Int J Refrig, vol. 18, n.º 4, pp. 228-234, 1995. doi: https://doi.org/ 10.1016/0140-7007(95)00006-W
dc.relationK. Sadhukhan, A.K. Chowdhuryi y B.K. Mandal, “Computer Based Thermodynamic Properties of Ammonia-Water Mixture for the Analysis of Power and Refrigeration Cycles”, International Journal of Thermodynamics, vol. 15, n.º 3, pp. 133-139, 2012. DOI: https://doi.org/10.5541/ijot.375
dc.relationE. Thorin, “Comparison of correlations for predicting thermodynamic properties of ammonia- water mixtures”, Int J Thermophys, vol. 21, n.º 4, pp. 853-870, 2000. doi: https://doi. org/10.1023/A:1006658107014
dc.relationE. Thorin, C. Dejfors, and G. Svedberg, “Thermodynamic properties of ammonia-water mixtures for power cycles”, Int J Thermophys, vol. 19, no. 2, pp. 501-510, 1998. https://doi. org/10.1023/A:1022525813769
dc.relationG.S. Alamdari, “Simple functions for predicting the thermodynamic properties of ammonia-water mixure”, IJE Transactions A: Basics vol. 20 n.º 1, pp. 95-104, 2007.
dc.relationG.S. Alamdari, “Simple equations for predicting entropy of ammonia-water mixure”. IJE Transactions B: Applications, vol. 20, n.º 1, 97-106, 2007.
dc.relationA.A. Zatorskii, “Algorithm for calculation of the parameters of the junction points of the cycles of absorption-type water-ammonia refrigeration machines in a digital computer”, Plenum Publishing Corporation, pp. 716-719, 1979.
dc.relationK.E. Herold, K. Hain y M.J. Moran, “AMMWAT: A computer program for calculating the thermodynamic properties of ammonia and water mixtures using a Gibbs Free Energy formulation”, ASME vol. 4, pp. 65-75, 1988.
dc.relationY.M. Park y R.E. Sonntag, “Thermodynamic properties of ammonia-water mixtures: a generalized equation-of-state approach”, ASME Trans, vol. 97, pp. 150-159, 1991.
dc.relationS.N. Mumah, S.S. Adefila y E.A. Arinze, “Properties generation procedures for first and second law analyses of ammonia-water heat pump system”, Energy Convers Mgmt, vol. 35, pp. 727- 736, 1994. doi:https://doi.org/10.1016/0196- 8904(94)90058-2
dc.relationA. Nowarski y D.G. Friend, “Application of the Extended Corresponding States Method to the Calculation of the Ammonia-Water Mixture Thermodynamic Surface”, International Journal of Thermophysics, vol. 19, pp. 1133-1142, 1998. doi: https://doi.org/10.1023/A:1022641709904
dc.relationR.M. Enick, G.P. Donahey y M. Holsinger, “Modeling the High-Pressure Ammonia-Water System with WATAM and the Peng-Robinson Equation of Sstate for Kalina Cycle Studies”, Ind Eng Chem Res, vol. 37, pp. 1644-1650, 1998. doi: https://doi. org/10.1021/ie970638s
dc.relationL.A. Weber, “Estimating the virial coefficients of the ammonia + water mixture”, Fluid Phase Equilibria, vol. 162, pp. 31-49, 1999. doi: https://doi. org/10.1016/S0378-3812(99)00181-8
dc.relationF. Xu, y D.Y. Goswami, “Thermodynamic properties of ammonia-water mixtures for power-cycle applications”, Energy, vol. 24, pp. 525-536, 1999. doi: https://doi.org/10.1016/S0360-5442(99)00007-9
dc.relationR. Sharma, D. Singhal, R. Ghosh y A. Dwivedi, “Potential applications of artificial neural networks to thermodynamics: vapor–Liquid equilibrium predictions”, Computers and Chemical Engineering, vol. 23, pp. 385-390, 1999.doi:https://doi. org/10.1016/S0098-1354(98)00281-6
dc.relationR. Lugo, J. Guilpart y L. Fournaison, “Calculation method of thermophysical properties of ammonia- water mixtures”, Presentado en Second Workshop on Ice Slurries, Paris France, International Institute of Refrigeration, 2000.
dc.relationA.A. Vasserman, A.G. Slynko, S.V. Bodyul, Yu.V. Gondarenko y E.S. Bodyul, “A Thermophysical Property Databank for Technically Important Gases and Liquids”, International Journal of Thermodynamics, vol. 22, pp. 477-485, 2001. doi: https:// doi.org/10.1023/A:1010774831521
dc.relationR. Lugo, L. Fournaison, J.M. Chourot y J. Guilpart, “An excess function method to model the thermophysical properties of one-phase secondary refrigerants”, International Journal of Refrigeration, vol. 25, pp. 916-923, 2002. doi: https://doi. org/10.1016/S0140-7007(01)00105-0
dc.relationR. Span y W. Wagner, “Equations of State for Technical Applications. I. Simultaneously Optimized Functional Forms for Nonpolar and Polar Fluids”, Int J of Thermophysics, vol. 24, pp. 1-39, 2003. doi: https://doi.org/10.1023/A:1022390430888
dc.relationR. Span y W. Wagner, “Equations of State for Technical Applications. III. Results for Polar Fluids”, Int J of Thermophysics, vol. 24, pp. 111-162, 2003, doi: https://doi.org/10.1023/A:1022362231796
dc.relationM. Barhoumi, A. Snoussi, E.N. Ben, K. Mejbri y A. Bellagi, “Modélistion des données thermodynamiques du mélange ammoniac/eau”, Int J Refrig, vol. 27, pp. 271-283, 2004. doi: https://doi. org/10.1016/j.ijrefrig.2003.09.005
dc.relationKh. Mejbri y A. Bellagi, “Modelling of the thermodynamic properties of the water-ammonia mixture by three different approaches”. Int J Refrig, vol. 29, pp. 211-218, 2006. doi: https://doi.org/10.1016/j. ijrefrig.2005.06.002
dc.relationA. Sencan, “Artificial intelligent methods for thermodynamic evaluation of ammonia-water refrigeration system”, Energy Conv & Man, vol. 47, pp. 3319-3332, 2006. doi: h
dc.relationA.H. Farrokh-Niae, H. Moddarress y M. Mohsen- Nia, “A three-parameter cubic equation of state for prediction of thermodynamic properties of fluids”. J Chem Thermodynamics, vol. 40, pp. 84-95, 2008. doi: https://doi.org/10.1016/j.jct.2007.05.012
dc.relationN.S. Ganesh y T. Srinivas, “Evaluation of thermodynamic properties of ammonia-water mixture up to 100 bar for power application systems”, Journal of Mechanical Engineering Research, vol. 3, no. 1, pp. 25-39, 2011.
dc.relationS. Kherris, M. Makhlouf, D. Zebbar y O. Sebbane, “Contribution study of the thermodynamics properties of the ammonia-water mixtures”, Thermal Science, vol. 17, n.º 3, pp. 891-902, 2013. doi: https://doi.org/10.2298/TSCI110206083K
dc.relationF. Li, L. Duanmu, L. Fu y X.L. Zhao, “Research and application of flue gas waste heat recovery in cogeneration based on absorption heat-exchange”, Proce
dc.relationA. Modi y F. Haglind, “A review of recent research on the use of zeotropic mixtures in power generation systems”, Energy Conversión and Management, vol. 138, pp. 603-626, 2017. doi: 10.1016/j. enconman.2017.02032
dc.relationA. Rattner y S. Garimella, “Fast, stable computation of thermodynamic properties of ammonia- water mixtures”, International Journal of Refrigeration, 2015. doi: https://doi.org/10.1016/j. ijrefrig.2015.09.009
dc.relationM. Wang, A. Manera, S. Qiu y G.H. Su, “Ammonia- water mixture property code (AWProC) development, verification and Kalina cycle design for nuclear power plant”, Progress in Nuclear Energy vol. 91, pp. 26-37, 2016. DOI: 10.1016/j.pnucene. 2016.04002
dc.relationO.M. Ibrahim y S.A. Klein, “Thermodynamic properties of ammonia-water mixtures”, ASHRAE Trans, pp. 1495-1502, 1993.
dc.relationY.M. El-Sayed y M. Tribus, “Thermodynamic properties of water ammonia mixtures theoretical implementation for use in power cycles analysis”, Special publication AES New York, ASME, n.º 1, pp. 89-95, 1985.
dc.relationB. Ziegler y Ch. Trepp, “Equation of state for ammonia- water mixtures”, Int J Refrig, vol. 7, pp. 101-106, 1984. doi: https://doi.org/10.1016/0140- 7007(84)90022-7
dc.relationS.C Chapra y R.P. Canale, “Métodos numéricos para ingenieros”. Quinta Edición (Español), Mc Grau Hill Interamericana, México, 2007.
dc.relationP.C. Gillespie, W.V. Wilding y G.M. Wilson, “Vapor- Liquid equilibrium measurements on the ammonia- water system from 313 K to 589 K”. AIChE Symp Ser, vol. 83, n.º 256, pp. 97-127, 1987.
dc.relationJ. Pospisil y Z. Fortelny, “Graphical expression of thermodynamic characteristics of absorption process in ammonia-water system”, EPJ Web of Conference, vol. 25, 01079(1)-01079(8), 2012. DOI:10.1051/eojconf/20122501079.
dc.relationA. Sencan, S. Gök y E. Dikmen, “Prediction of liquid and Vapor Enthalpies of Ammonia-water Mixture”, Energy Source, Part A, vol. 33, pp. 1463-1473, 2011. doi: https://doi.org/10.1080/15567030903397891
dc.relationK.H. Kim, K. Kim y H.J. Ko, “Entropy and exergy analysis of a heat recovery vapor generator for ammonia- water mixtures”, Entropy, vol. 16, pp. 2056- 2070, 2014. DOI: 10.3390/e16042056
dc.relationR.C.E. Campos, P.J.C. Escobar, S.C. Rodríguez, M. Leme, O.J. Venturini, L.E. Silva, C.V. Melián, D. dos S. Marques, D.F.R. Lofrano y V. Gialluca, “Exergetic and economic analysis of Kalina cycle foor low temperatura geotermal source in Brazil”, Presentado en Procedings of ECOS 2012. The 25th International conference on efficiency, cost, optimization, simulation and environmental impact of energy systems. Perugia, Italy, 2012.
dc.relationV. Srikanth, B.R. Narender y A. Gupta, “Thermodynamic Analysis of vapour absorption refrigeration system using solar energy”, International Journal of Latest Trends in Engineering and Thechnology, vol. 7, n.º 4, pp. 17-26, noviembre 2016. DOI: 10.21172/1.74003
dc.relationL. Becker y C.J.L. Corrales, “Fundamental EoS Implementation for {Water+ammonia} in Modelica”, Presentado en Proceedings of the 11th International Modelica Conference, September 21-23, pp. 647-652, 2015. doi: https://doi.org/10.3384/ ecp15118647
dc.relationM.A.I. El-Shaarawi, S.A.M. Said y M.U. Siddiqui, “New Correlation Equations for Ammonia-Water Vapor-Liquid Equilibrium (VLE) Thermodynamic Properties”, ASHRAE, DA-13-025, 2013.
dc.relationD. Kong, J. Liu, L. Zhang, H. He y Z. Fang, “Thermodynamic and Experimental Analysis of an Ammonia- Water Absorption Chiller”, Energy and Power Engineering, vol. 2, pp. 298-305, 2010. doi: https:// doi.org/10.4236/epe.2010.24042.
dc.relationL. Luo, H. Gao, Ch. Liu y X. Xu, “Parametric investigation and Thermoeconomic Optimization of a Combined Cycle for Recovering the Waste Heat From Nuclear Closed Brayton Cycle”, Science and Technology of Nuclear Installations, 2016. doi: https://doi.org/10.1155/2016/6790576
dc.relationR. Rivero, G. Montero y R. Pulido, “Terminología para la Aplicación del Método de Exergia”, Revista del IMIQ, vol. 17, pp. 7-11, 1990.
dc.relationRevista Ingeniería, Investigación y Desarrollo;Volumen 17, número 2 (Julio-Diciembre 2017)
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsCopyright (c) 2017 Universidad Pedagógica y Tecnológica de Colombia
dc.sourcehttps://revistas.uptc.edu.co/index.php/ingenieria_sogamoso/article/view/7185/5613
dc.titleDesarrollo de una aplicación para el cálculo de las propiedades de la mezcla amoniaco-agua
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución