Artículo
The mittag leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation
Fecha
2016-03Registro en:
Dorrego, Gustavo Abel, 2016. The Mittag Leffler function and its application to the ultra hyperbolic time fractional diffusion wave equation. Integral Transforms and Special Functions. Reino Unido: Taylor & Francis Group, vol. 27, no. 5, p. 392-404. ISSN 1476-829.
1476-829
Autor
Dorrego, Gustavo Abel
Institución
Resumen
In this paper we study an n-dimensional generalization of timefractional diffusion-wave equation, where the Laplacian operator is replaced by the ultra-hyperbolic operator and the time-fractional derivative is taken in the Hilfer sense. The analytical solution is obtained in terms of the Fox’s H-function, for which the inverse Fourier transform of a Mittag–Leffler-type function that contains in its argument a positive-definite quadratic form is calculated.
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Influencia del método de dispersión en el fraccionamiento físico de un suelo de Argentina central
Pestoni, Sofía; Gallardo, Norma; Pérez Harguindeguy, Natalia; Kowaljow, Esteban (Asociación Argentina de la Ciencia del Suelo, 2020-07)Se compararon cuatro métodos de dispersión de suelos, ampliamente utilizados en protocolos de fraccionamiento físico, sobre un Molisol de pastizales montañosos del centro de Argentina. La proporción de las fracciones fina ... -
Fractional Sobolev spaces with variable exponents and fractional p(X)-Laplacians
Kaufmann, Uriel; Rossi, Julio Daniel; Vidal, Raúl Emilio (Univ Szeged, 2017-11)In this article we extend the Sobolev spaces with variable exponents to include the fractional case, and we prove a compact embedding theorem of these spaces into variable exponent Lebesgue spaces. As an application we ...