dc.creatorDorrego, Gustavo Abel
dc.date.accessioned2020-06-02T22:47:47Z
dc.date.available2020-06-02T22:47:47Z
dc.date.created2020-06-02T22:47:47Z
dc.date.issued2015
dc.identifier1314-7552
dc.identifierhttp://repositorio.unne.edu.ar/handle/123456789/9103
dc.description.abstractThe aim of this paper is to introduce an alternative de nition for the k-Riemann-Liouville fractional derivative given in [6] and whose advantage is that it is the left inverse of the corresponding of k-Riemann-Liouville fractional integral operator introduced by [5]. Its basic properties are discussed, their Laplace transform, the derivative of the potential function and the derivative of the Mittag-Le er k-function introduced in is calculated.
dc.languageeng
dc.publisherHikari Ltd
dc.relationhttp://dx.doi.org/10.12988/ams.2015.411893
dc.relationDorrego, Gustavo Abel, 2015. An Alternative Definition for the k-Riemann-Liouville Fractional Derivative. Applied Mathematical Sciences. Bulgaria: Hikari Ltd, vol. 9. no. 10, p. 481 - 491. ISSN 1314-7552.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsopenAccess
dc.sourceApplied Mathematical Sciences, 2015, vol. 9, no 10, p. 481-491
dc.subjectK-fractional calculus
dc.subjectK-riemann-liouville fractional integral
dc.subjectMatemáticas
dc.titleAn alternative definition for the k-Riemann liouville fractional derivative
dc.typeArtículo


Este ítem pertenece a la siguiente institución