dc.creator | Dorrego, Gustavo Abel | |
dc.date.accessioned | 2020-06-02T22:47:47Z | |
dc.date.available | 2020-06-02T22:47:47Z | |
dc.date.created | 2020-06-02T22:47:47Z | |
dc.date.issued | 2015 | |
dc.identifier | 1314-7552 | |
dc.identifier | http://repositorio.unne.edu.ar/handle/123456789/9103 | |
dc.description.abstract | The aim of this paper is to introduce an alternative de nition for the k-Riemann-Liouville fractional derivative given in [6] and whose advantage is that it is the left inverse of the corresponding of k-Riemann-Liouville fractional integral operator introduced by [5]. Its basic properties are discussed, their Laplace transform, the derivative of the potential function and the derivative of the Mittag-Le er k-function introduced in is calculated. | |
dc.language | eng | |
dc.publisher | Hikari Ltd | |
dc.relation | http://dx.doi.org/10.12988/ams.2015.411893 | |
dc.relation | Dorrego, Gustavo Abel, 2015. An Alternative Definition for the k-Riemann-Liouville Fractional Derivative. Applied Mathematical Sciences. Bulgaria: Hikari Ltd, vol. 9. no. 10, p. 481 - 491. ISSN 1314-7552. | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ | |
dc.rights | openAccess | |
dc.source | Applied Mathematical Sciences, 2015, vol. 9, no 10, p. 481-491 | |
dc.subject | K-fractional calculus | |
dc.subject | K-riemann-liouville fractional integral | |
dc.subject | Matemáticas | |
dc.title | An alternative definition for the k-Riemann liouville fractional derivative | |
dc.type | Artículo | |