dc.creatorPlastino, Ángel Luis
dc.creatorBellomo, Guido
dc.creatorPlastino, Ángel Ricardo
dc.date2015
dc.date2019-11-20T12:31:58Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/85739
dc.identifierissn:1687-9120
dc.descriptionFisher's information measure I plays a very important role in diverse areas of theoretical physics. The associated measures I<SUB>x</SUB> and I<SUB>p</SUB>, as functionals of quantum probability distributions defined in, respectively, coordinate and momentum spaces, are the protagonists of our present considerations. The product I<SUB>x</SUB>I<SUB>p</SUB> has been conjectured to exhibit a nontrivial lower bound in Hall (2000). More explicitly, this conjecture says that for any pure state of a particle in one dimension I<SUB>x</SUB>I<SUB>p</SUB> ≥ 4. We show here that such is not the case. This is illustrated, in particular, for pure states that are solutions to the free-particle Schrödinger equation. In fact, we construct a family of counterexamples to the conjecture, corresponding to time-dependent solutions of the free-particle Schrödinger equation. We also conjecture that any normalizable time-dependent solution of this equation verifies I<SUB>x</SUB>I<SUB>p</SUB> → 0 for t → ∞.
dc.descriptionFacultad de Ciencias Exactas
dc.descriptionInstituto de Física La Plata
dc.formatapplication/pdf
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectCiencias Exactas
dc.subjectEntropy
dc.subjectFisher information
dc.subjectComplexity
dc.titleOn a conjecture regarding Fisher information
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución