dc.creatorGoldberg, Ezequiel
dc.creatorCarlevaro, Carlos Manuel
dc.creatorPugnaloni, Luis Ariel
dc.date2015
dc.date2019-11-20T17:07:29Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/85815
dc.identifierissn:1852-4249
dc.descriptionWe report two-dimensional simulations of circular and polygonal grains passing through an aperture at the bottom of a silo. The mass flow rate for regular polygons is lower than for disks, as observed by other authors. We show that both the exit velocity of the grains and the packing fraction are lower for polygons, which leads to the reduced flow rate. We point out the importance of the criteria used to define when two objects of different shape are considered to be of the same size. Depending on this criteria, the mass flow rate may vary significantly for some polygons. Moreover, the particle flow rate is non-trivially related to a combination of mass flow rate, particle shape and particle size. For some polygons, the particle flow rate may be lower or higher than that of the corresponding disks depending on the size comparison criteria.
dc.descriptionInstituto de Física de Líquidos y Sistemas Biológicos
dc.formatapplication/pdf
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsCreative Commons Attribution 4.0 International (CC BY 4.0)
dc.subjectFísica
dc.subjectGranular flow
dc.subjectNon-circular particles
dc.titleFlow rate of polygonal grains through a bottleneck: interplay between shape and size
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución