dc.creatorAmore, Paolo
dc.creatorFernández, Francisco Marcelo
dc.date2013
dc.date2019-11-05T18:10:11Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/85004
dc.identifierissn:1895-1082
dc.descriptionWe develop a formula for matching a Taylor series about the origin and an asymptotic exponential expansion for large values of the coordinate. We test it on the expansion of the generating functions for the moments and connected moments of the Hamiltonian operator. In the former case the formula produces the energies and overlaps for the Rayleigh-Ritz method in the Krylov space. We choose the harmonic oscillator and a strongly anharmonic oscillator as illustrative examples for numerical test. Our results reveal some features of the connected-moments expansion that were overlooked in earlier studies and applications of the approach.
dc.descriptionFacultad de Ciencias Exactas
dc.descriptionInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
dc.formatapplication/pdf
dc.format195-205
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectCiencias Exactas
dc.subjectconnected moments expansion
dc.subjectconvergence
dc.subjectfull solution
dc.subjectRayleigh-Ritz method
dc.titleSolution to the equations of the moment expansions
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución