dc.creatorChiumiento, Eduardo Hernán
dc.creatorDi Iorio y Lucero, M. E.
dc.date2013
dc.date2019-11-13T17:24:09Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/85541
dc.identifierissn:0022-247X
dc.descriptionLet I be a symmetrically-normed ideal of the space of bounded operators acting on a Hilbert space H. Let {pi}1w(1≤w≤∞) be a family of mutually orthogonal projections on H. The pinching operator associated with the former family of projections is given by P:I→I,P(x)=∑i=1wpixpi. Let UI denote the Banach-Lie group of the unitary operators whose difference with the identity belongs to I. We study geometric properties of the orbit UI(P)={LuPLu*:u∈UI}, where Lu is the left representation of UI on the algebra B(I) of bounded operators acting on I. The results include necessary and sufficient conditions for UI(P) to be a submanifold of B(I). Special features arise in the case of the ideal K of compact operators. In general, UK(P) turns out to be a non complemented submanifold of B(K). We find a necessary and sufficient condition for UK(P) to have complemented tangent spaces in B(K). We also show that UI(P) is a covering space of another orbit of pinching operators.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format103-118
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectCovering space
dc.subjectLeft representation
dc.subjectPinching operator
dc.subjectSubmanifold
dc.subjectSymmetrically-normed ideal
dc.titleGeometry of unitary orbits of pinching operators
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución