dc.creatorArgerami, Martín
dc.creatorMassey, Pedro Gustavo
dc.date2013
dc.date2019-11-07T14:43:36Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/85129
dc.identifierissn:0030-8730
dc.descriptionWe describe majorization between selfadjoint operators in a ρ-finite II∞ factor (M, τ) in terms of simple spectral relations. For a diffuse abelian von Neumann subalgebra A ⊂ M that admits a (necessarily unique) tracepreserving conditional expectation, denoted by EA, we characterize the closure in the measure topology of the image through EA of the unitary orbit of a selfadjoint operator in M in terms of majorization (i.e., a Schur-Horn theorem). We also obtain similar results for the contractive orbit of positive operators in M and for the unitary and contractive orbits of τ-integrable operators in M.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format283-310
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectII∞ factors
dc.subjectMajorization
dc.subjectSchur-Horn theorem
dc.titleSchur-Horn theorems in II∞-factors
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución