dc.creatorBorda, Nicolás
dc.creatorFernández, Javier
dc.creatorGrillo, Sergio
dc.date2013
dc.date2019-11-13T13:52:04Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/85473
dc.identifierissn:1941-4889
dc.descriptionWe briefly review the notion of second order constrained (continuous) system (SOCS) and then propose a discrete time counterpart of it, which we naturally call discrete second order constrained system (DSOCS). To illustrate and test numerically our model, we construct certain integrators that simulate the evolution of two mechanical systems: a particle moving in the plane with prescribed signed curvature, and the inertia wheel pendulum with a Lyapunov constraint. In addition, we prove a local existence and uniqueness result for trajectories of DSOCSs. As a first comparison of the underlying geometric structures, we study the symplectic behavior of both SOCSs and DSOCSs.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format381-397
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectDiscrete mechanical systems
dc.subjectGeometric mechanics
dc.subjectNonholonomic mechanics
dc.subjectSecond order constraints
dc.titleDiscrete second order constrained lagrangian systems: first results
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución