dc.creatorMartín, María Teresa
dc.creatorPlastino, Ángel Luis
dc.creatorVampa, Victoria
dc.date2014
dc.date2019-11-06T14:12:30Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/85041
dc.identifierissn:1099-4300
dc.descriptionThe development of methods for time series analysis and prediction has always been and continues to be an active area of research. In this work, we develop a technique for modelling chaotic time series in parametric fashion. In the case of tonic-clonic epileptic electroencephalographic (EEG) analysis, we show that appropriate information theory tools provide valuable insights into the dynamics of neural activity. Our purpose is to demonstrate the feasibility of the maximum entropy principle to anticipate tonic-clonic seizure in patients with epilepsy.
dc.descriptionFacultad de Ciencias Exactas
dc.descriptionInstituto de Física La Plata
dc.descriptionFacultad de Ingeniería
dc.formatapplication/pdf
dc.format4603-4611
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by/3.0/
dc.rightsCreative Commons Attribution 3.0 Unported (CC BY 3.0)
dc.subjectCiencias Exactas
dc.subjectIngeniería
dc.subjectMaximum entropy
dc.subjectPseudo-inverse approach
dc.subjectTonic-clonic EEG transition
dc.titleA maximum entropy approach for predicting epileptic tonic-clonic seizure
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución