dc.creatorGiribet, Juan Ignacio
dc.creatorMaestripieri, Alejandra Laura
dc.creatorMartínez Pería, Francisco Dardo
dc.date2008
dc.date2019-10-29T13:40:32Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/84288
dc.identifierissn:0024-3795
dc.descriptionGiven a closed subspace S of a Hilbert space H and a (bounded) selfadjoint operator B acting on H, a min-max representation of the shorted operator (or Schur complement) of B to S is obtained under compatibility hypotheses. Also, an extension of Pekarev's formula is given.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format1899-1911
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectCiencias Exactas
dc.subjectMatemática
dc.subjectSchur complement
dc.subjectSelfadjoint operator
dc.subjectShorted operator
dc.titleShorting selfadjoint operators in Hilbert spaces
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución