dc.creator | Antezana, Jorge Abel | |
dc.creator | Buckley, Jeremiah | |
dc.creator | Marzo, Jordi | |
dc.creator | Olsen, Jan Fredrik | |
dc.date | 2012 | |
dc.date | 2019-10-25T15:20:11Z | |
dc.identifier | http://sedici.unlp.edu.ar/handle/10915/84075 | |
dc.identifier | issn:0022-247X | |
dc.description | We study the zero sets of random analytic functions generated by a sum of the cardinal sine functions which form an orthonormal basis for the Paley-Wiener space. As a model case, we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability that there is no zero in a bounded interval decays exponentially as a function of the length. | |
dc.description | Facultad de Ciencias Exactas | |
dc.format | application/pdf | |
dc.format | 466-472 | |
dc.language | en | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
dc.subject | Ciencias Exactas | |
dc.subject | Matemática | |
dc.subject | Gap probabilities | |
dc.subject | Gaussian analytic functions | |
dc.subject | Paley-Wiener | |
dc.title | Gap probabilities for the cardinal sine | |
dc.type | Articulo | |
dc.type | Articulo | |