dc.creatorAntezana, Jorge Abel
dc.creatorBuckley, Jeremiah
dc.creatorMarzo, Jordi
dc.creatorOlsen, Jan Fredrik
dc.date2012
dc.date2019-10-25T15:20:11Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/84075
dc.identifierissn:0022-247X
dc.descriptionWe study the zero sets of random analytic functions generated by a sum of the cardinal sine functions which form an orthonormal basis for the Paley-Wiener space. As a model case, we consider real-valued Gaussian coefficients. It is shown that the asymptotic probability that there is no zero in a bounded interval decays exponentially as a function of the length.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format466-472
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectCiencias Exactas
dc.subjectMatemática
dc.subjectGap probabilities
dc.subjectGaussian analytic functions
dc.subjectPaley-Wiener
dc.titleGap probabilities for the cardinal sine
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución