dc.creator | Antezana, Jorge Abel | |
dc.creator | Corach, Gustavo | |
dc.creator | Ruiz, Mariano Andrés | |
dc.creator | Stojanoff, Demetrio | |
dc.date | 2005 | |
dc.date | 2019-10-15T16:45:33Z | |
dc.identifier | http://sedici.unlp.edu.ar/handle/10915/83290 | |
dc.identifier | issn:0024-3795 | |
dc.description | Let H be a (separable) Hilbert space and {ek}k≥1 a fixed orthonormal basis of H. Motivated by many papers on scaled projections, angles of subspaces and oblique projections, we define and study the notion of compatibility between a subspace and the abelian algebra of diagonal operators in the given basis. This is used to refine previous work on scaled projections, and to obtain a new characterization of Riesz frames. | |
dc.description | Facultad de Ciencias Exactas | |
dc.format | application/pdf | |
dc.format | 367-389 | |
dc.language | en | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
dc.subject | Matemática | |
dc.subject | Angles | |
dc.subject | Compatibility | |
dc.subject | Frames | |
dc.subject | Riesz frames | |
dc.subject | Scaled projection | |
dc.subject | Weighted projection | |
dc.title | Weighted projections and Riesz frames | |
dc.type | Articulo | |
dc.type | Articulo | |