dc.creatorAntezana, Jorge Abel
dc.creatorCorach, Gustavo
dc.creatorRuiz, Mariano Andrés
dc.creatorStojanoff, Demetrio
dc.date2005
dc.date2019-10-15T16:45:33Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/83290
dc.identifierissn:0024-3795
dc.descriptionLet H be a (separable) Hilbert space and {ek}k≥1 a fixed orthonormal basis of H. Motivated by many papers on scaled projections, angles of subspaces and oblique projections, we define and study the notion of compatibility between a subspace and the abelian algebra of diagonal operators in the given basis. This is used to refine previous work on scaled projections, and to obtain a new characterization of Riesz frames.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format367-389
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectAngles
dc.subjectCompatibility
dc.subjectFrames
dc.subjectRiesz frames
dc.subjectScaled projection
dc.subjectWeighted projection
dc.titleWeighted projections and Riesz frames
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución