dc.creatorCorach, Gustavo
dc.creatorMaestripieri, Alejandra
dc.creatorStojanoff, Demetrio
dc.date2006
dc.date2019-10-10T19:05:17Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/83108
dc.identifierissn:0002-9939
dc.descriptionIf H is a Hilbert space, A is a positive bounded linear operator on H and S is a closed subspace of H, the relative position between S and A-1 (S⊥) establishes a notion of compatibility. We show that the compatibility of (A, S) is equivalent to the existence of a convenient orthogonal projection in the operator range R(A1/2) with its canonical Hilbertian structure.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format765-778
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectOblique projections
dc.subjectOperator ranges
dc.subjectPositive operators
dc.titleProjections in operator ranges
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución