dc.creator | Antezana, Jorge Abel | |
dc.creator | Massey, Pedro Gustavo | |
dc.creator | Stojanoff, Demetrio | |
dc.date | 2007 | |
dc.date | 2019-10-15T16:22:19Z | |
dc.identifier | http://sedici.unlp.edu.ar/handle/10915/83285 | |
dc.identifier | issn:0022-247X | |
dc.description | Let A be a C*-algebra and φ{symbol} : A → L (H) be a positive unital map. Then, for a convex function f : I → R defined on some open interval and a self-adjoint element a ∈ A whose spectrum lies in I, we obtain a Jensen's-type inequality f (φ{symbol} (a)) ≤ φ{symbol} (f (a)) where ≤ denotes an operator preorder (usual order, spectral preorder, majorization) and depends on the class of convex functions considered, i.e., monotone convex or arbitrary convex functions. Some extensions of Jensen's-type inequalities to the multi-variable case are considered. | |
dc.description | Facultad de Ciencias Exactas | |
dc.format | application/pdf | |
dc.format | 297-307 | |
dc.language | en | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
dc.subject | Matemática | |
dc.subject | Convex functions | |
dc.subject | Jensen's inequality | |
dc.subject | Majorization | |
dc.subject | Positive maps | |
dc.title | Jensen's inequality for spectral order and submajorization | |
dc.type | Articulo | |
dc.type | Articulo | |