dc.creatorAntezana, Jorge Abel
dc.creatorMassey, Pedro Gustavo
dc.creatorStojanoff, Demetrio
dc.date2007
dc.date2019-10-15T16:22:19Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/83285
dc.identifierissn:0022-247X
dc.descriptionLet A be a C*-algebra and φ{symbol} : A → L (H) be a positive unital map. Then, for a convex function f : I → R defined on some open interval and a self-adjoint element a ∈ A whose spectrum lies in I, we obtain a Jensen's-type inequality f (φ{symbol} (a)) ≤ φ{symbol} (f (a)) where ≤ denotes an operator preorder (usual order, spectral preorder, majorization) and depends on the class of convex functions considered, i.e., monotone convex or arbitrary convex functions. Some extensions of Jensen's-type inequalities to the multi-variable case are considered.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format297-307
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectConvex functions
dc.subjectJensen's inequality
dc.subjectMajorization
dc.subjectPositive maps
dc.titleJensen's inequality for spectral order and submajorization
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución