dc.creatorAlonso, Ana Esther
dc.creatorDello Russo, Anahí
dc.date2009
dc.date2019-10-04T16:12:03Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/82743
dc.identifierissn:0377-0427
dc.descriptionThis paper deals with the nonconforming spectral approximation of variationally posed eigenvalue problems. It is an extension to more general situations of known previous results about nonconforming methods. As an application of the present theory, convergence and optimal order error estimates are proved for the lowest order Crouzeix-Raviart approximation of the eigenpairs of two representative second-order elliptical operators.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format177-197
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectCiencias Exactas
dc.subjectEigenvalue problems
dc.subjectNonconforming methods
dc.subjectSpectral approximation
dc.subjectSteklov eigenvalue problem
dc.titleSpectral approximation of variationally-posed eigenvalue problems by nonconforming methods
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución