dc.creatorMassey, Pedro Gustavo
dc.date2009
dc.date2019-10-03T17:54:48Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/82642
dc.identifierissn:0024-3795
dc.descriptionIn this paper we introduce the q-potential as an extension of the Benedetto-Fickus frame potential, defined on general reconstruction systems and show that protocols are the minimizers of this potential under certain restrictions. We extend recent results of B.G. Bodmann on the structure of optimal protocols with respect to 1 and 2 lost packets where the worst (normalized) reconstruction error is computed with respect to a compatible unitarily invariant norm. We finally describe necessary and sufficient (spectral) conditions, that we call q-fundamental inequalities, for the existence of protocols with prescribed properties by relating this problem to Klyachko's and Fulton's theory on sums of hermitian operators.
dc.descriptionFacultad de Ciencias Exactas
dc.formatapplication/pdf
dc.format1302-1316
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.subjectMatemática
dc.subjectCompatible unitarily invariant norm
dc.subjectErasures
dc.subjectq-Fundamental inequality
dc.subjectq-Potential
dc.subjectReconstruction systems
dc.titleOptimal reconstruction systems for erasures and for the q-potential
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución