dc.creatorPintarelli, María Beatriz
dc.date2017
dc.date2019-08-06T17:42:08Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/78707
dc.identifierissn:2227-4324
dc.descriptionThe problem is to find a(t) y w(x; t) such that wt = a(t) (wx)x+r(x; t) under the initial condition w(x; 0) =fi(x) and the boundary conditions w(0; t) = 0 ; wx(0; t) = wx(1; t)+alfa w(1; t) about a region D ={(x; t); 0 <x < 1; t >0}. In addition it must be fulfilled the integral of w (x, t) with respect to x is equal to E(t) where fi(x) , r(x; t) and E(t) are known functions and alfa is an arbitrary real number other than zero. The objective is to solve the problem as an application of the inverse moment problem. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on moments problem. In addition, the method is illustrated with several examples.
dc.descriptionFacultad de Ciencias Exactas
dc.descriptionGrupo de Aplicaciones Matemáticas y Estadísticas de la Facultad de Ingeniería (GAMEFI)
dc.formatapplication/pdf
dc.format109-114
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsCreative Commons Attribution 4.0 International (CC BY 4.0)
dc.subjectMatemática
dc.subjectgeneralized moment problem
dc.subjectintegral equations
dc.subjectinverse problem
dc.subjectparabolic PDEs
dc.subjecttruncated expansion method
dc.titleA Problem of Coefficient Determination in Parabolic Equations Solved as Moment Problem
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución