dc.creatorRigalli, Nicolás Francisco
dc.creatorMontero Bulacio, Enrique
dc.creatorRomagnoli, Martín
dc.creatorTerissi, Lucas D.
dc.creatorPortapila, Margarita Isabel
dc.date2018-09
dc.date2018-12-14T12:35:05Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/71510
dc.identifierhttp://47jaiio.sadio.org.ar/sites/default/files/CAI-50.pdf
dc.identifierissn:2525-0949
dc.descriptionThis paper assesses the capability of an spectrometer used in field experiments of soybean, maize and wheat. The objective of this work is to select different wavelengths intervals of the spectral reflectance curve, within the range 632-1125 nm, as features for classification using machine learning methods. Two different classifications are presented, species selection and growth stage identification. For species classification accuracy of 92% is reached, while 99% is obtained for stage classification. In addition we propose a new index that outperforms analyzed established vegetation indices, which shows the potential advantage of using this type of devices.
dc.descriptionSociedad Argentina de Informática e Investigación Operativa
dc.formatapplication/pdf
dc.format374-387
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-sa/3.0/
dc.rightsCreative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
dc.subjectCiencias Informáticas
dc.subjectremote sensing
dc.subjectNIR
dc.subjectspectral feature selection
dc.titleIdentification and characterization of crops through the analysis of spectral data with machine learning algorithms
dc.typeObjeto de conferencia
dc.typeObjeto de conferencia


Este ítem pertenece a la siguiente institución