dc.creatorCaniza, Horacio
dc.creatorGaleano, Diego
dc.creatorPaccanaro, Alberto
dc.date2017-09
dc.date2017
dc.date2017-10-26T14:32:43Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/63201
dc.identifierhttp://www.clei2017-46jaiio.sadio.org.ar/sites/default/files/Mem/SLMDI/SLMDI-03.pdf
dc.descriptionThe current drug development pipelines are characterised by long processes with high attrition rates and elevated costs. More than 80% of new compounds fail in the later stages of testing due to severe side-effects caused by unknown biomolecular targets of the compounds. In this work, we present a measure that can predict shared targets for drugs in DrugBank through large scale analysis of the biomedical literature. We show that using MeSH ontology terms can accurately describe the drugs and that appropriate use of the MeSH ontological structure can determine pairwise drug similarity.
dc.descriptionSociedad Argentina de Informática e Investigación Operativa (SADIO)
dc.formatapplication/pdf
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-sa/3.0/
dc.rightsCreative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
dc.subjectCiencias Informáticas
dc.subjectMeSH terms
dc.subjectdrug descriptors
dc.subjectdrug targets
dc.subjectdrugbank
dc.titleMining the biomedical literature to predict shared drug targets in drugbank
dc.typeObjeto de conferencia
dc.typeObjeto de conferencia


Este ítem pertenece a la siguiente institución