dc.date.accessioned2012-03-30T05:32:17Z
dc.date.accessioned2019-08-05T18:22:04Z
dc.date.available2012-03-30T05:32:17Z
dc.date.available2019-08-05T18:22:04Z
dc.date.created2012-03-30T05:32:17Z
dc.date.issued2004-07-12
dc.identifierAdvances in Difference Equations. 2004 Jul 12;2004(3):513569
dc.identifierhttp://hdl.handle.net/2139/12617
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3020346
dc.description.abstractGlobal almost sure asymptotic stability of solutions of some nonlinear stochastic difference equations with cubic-type main part in their drift and diffusive part driven by square-integrable martingale differences is proven under appropriate conditions in and#8477;1. As an application of this result, the asymptotic stability of stochastic numerical methods, such as partially drift-implicit and#952;-methods with variable step sizes for ordinary stochastic differential equations driven by standard Wiener processes, is discussed.
dc.languageen
dc.rightset al.; licensee BioMed Central Ltd.
dc.titleGlobal asymptotic stability of solutions of cubic stochastic difference equations
dc.typeJournal Article


Este ítem pertenece a la siguiente institución