Colombia | Artículo de revista
dc.creatorGarcía, Gonzalo
dc.creatorMuñoz, Jhovanny
dc.date.accessioned2011-10-14T20:04:24Z
dc.date.available2011-10-14T20:04:24Z
dc.date.created2011-10-14T20:04:24Z
dc.date.issued2011-10-14
dc.identifierhttps://hdl.handle.net/10893/2211
dc.description.abstractLet (Mⁿ, g) be an n – dimensional compact Riemannian manifold with boundary with n ≥ 2. In this paper we study the uniquensess of metrics in the conformal class of the metric g having the same scalar curvature in M, aM, and the same mean curvature on the boundary of M, aM. We prove the equivalence of some uniqueness results replacing the hypothesis on the first Neumann eigenvalue of a linear elliptic problem associated to the problem of conformal deformations of metrics for one about the first Dirichlet eigenvalue of that problem.
dc.languageen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectConformal Metrics
dc.subjectScalar Curvature
dc.subjectMean Curvature
dc.titleAbout the uniqueness of conformal metrics with pre scribed scalar and mean curvatures on compact manifolds with boundary.
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución