Artículo de revista
On the oscillation of solutions of stochastic difference equations.
Autor
Appleby, John A. D.
Rodkina, Alexandra
Schurz, Henri
Institución
Resumen
This paper considers the pathwise oscillatory behaviour of the scalar nonlinear stochastic dif- ference equation X(n + 1) = X(n) − F (X(n)) + G(n, X(n))ξ(n + 1), n = 0, 1, . . . , with non-random initial value X0 . Here (ξ(n))n≥0 is a sequence of independent random variables with zero mean and unit variance. The functions f : R → R and g : R → R are presumed to be continuous.