dc.creatorPerdomo, Oscar
dc.date.accessioned2011-10-13T19:34:41Z
dc.date.available2011-10-13T19:34:41Z
dc.date.created2011-10-13T19:34:41Z
dc.date.issued2011-10-13
dc.identifierhttps://hdl.handle.net/10893/1713
dc.description.abstractLet M [subset] [S.sup.n] be a minimal hypersurface, and let us denote by A the shape operator of M. In this paper we give an alternative proof of the theorem that states that if [[absolute value of A].sup.2] = n - 1, then M is a Clifford minimal hypersurface.
dc.languageen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMinimal hypersurfaces
dc.subjectSpheres
dc.subjectClifford hypersurfaces
dc.subjectShape operator
dc.titleAnother proof for the rigidity of Clifford minimal hypersurfaces of [S.sup.n]
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución