dc.contributorVarejão, F. M.
dc.contributorRODRIGUES, A. L.
dc.contributorRauber, T. W.
dc.contributorCARVALHO, A. P.
dc.date.accessioned2016-07-11
dc.date.accessioned2016-08-29T15:33:25Z
dc.date.accessioned2019-05-28T12:28:54Z
dc.date.available2016-07-11
dc.date.available2016-08-29T15:33:25Z
dc.date.available2019-05-28T12:28:54Z
dc.date.created2016-07-11
dc.date.created2016-08-29T15:33:25Z
dc.date.issued2016-05-20
dc.identifierMELLO, L. H. S., Evaluating loss minimization in multi-label classification via stochastic simulation using beta distribution
dc.identifierhttp://repositorio.ufes.br/handle/10/4309
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2870383
dc.description.abstractThe objective of this work is to present the effectiveness and efficiency of algorithms for solving the loss minimization problem in Multi-Label Classification (MLC). We first prove that a specific case of loss minimization in MLC isNP-complete for the loss functions Coverage and Search Length, and therefore,no efficient algorithm for solving such problems exists unless P=NP. Furthermore, we show a novel approach for evaluating multi-label algorithms that has the advantage of not being limited to some chosen base learners, such as K-neareast Neighbor and Support Vector Machine, by simulating the distribution of labels according to multiple Beta Distributions.
dc.publisherUniversidade Federal do Espírito Santo
dc.publisherBR
dc.publisherPrograma de Pós-Graduação em Informática
dc.publisherUFES
dc.publisherMestrado em Informática
dc.subjectmulti-label classification
dc.subjectloss minimization
dc.subjectdata mining
dc.titleEvaluating loss minimization in multi-label classification via stochastic simulation using beta distribution
dc.typeTesis


Este ítem pertenece a la siguiente institución