dc.contributorTöben, Dirk
dc.contributorhttp://lattes.cnpq.br/0022267686144981
dc.contributorHartmann Junior, Luiz Roberto
dc.contributorhttp://lattes.cnpq.br/4217613854338579
dc.contributorhttp://lattes.cnpq.br/3795412733352592
dc.creatorCaramello Junior, Francisco Carlos
dc.date.accessioned2018-05-15T18:14:09Z
dc.date.available2018-05-15T18:14:09Z
dc.date.created2018-05-15T18:14:09Z
dc.date.issued2018-03-22
dc.identifierCARAMELLO JUNIOR, Francisco Carlos. Positively curved Killing foliations via deformations. 2018. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10024.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/10024
dc.description.abstractWe show that a manifold admitting a Killing foliation with positive transverse curvature and maximal defect fibers over finite quotients of spheres or weighted complex projective spaces. This result is obtained by deforming the foliation into a closed one, while maintaining transverse geometric properties, which allows us to apply results from the Riemannian geometry of orbifolds to the space of leaves. We also show that the basic Euler characteristic is preserved by such deformations, which provides us some topological obstructions for Riemannian foliations.
dc.languageeng
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Matemática - PPGM
dc.publisherCâmpus São Carlos
dc.rightsAcesso aberto
dc.subjectRiemanniana
dc.subjectFolheações
dc.subjectFolheação
dc.subjectCurvatura
dc.subjectPositiva
dc.subjectDeformações
dc.subjectKilling
dc.subjectRiemannian
dc.subjectFoliations
dc.subjectPositive
dc.subjectCurvature
dc.subjectDeformations
dc.titlePositively curved Killing foliations via deformations
dc.typeTesis


Este ítem pertenece a la siguiente institución