dc.contributorLouzada Neto, Francisco
dc.contributorhttp://lattes.cnpq.br/0994050156415890
dc.contributorPerdoná, Gleici da Silva Castro
dc.contributorhttp://lattes.cnpq.br/0745160064860746
dc.contributorhttp://lattes.cnpq.br/7964577580391487
dc.creatorGuirado, Lorene
dc.date.accessioned2018-06-13T20:03:51Z
dc.date.available2018-06-13T20:03:51Z
dc.date.created2018-06-13T20:03:51Z
dc.date.issued2010-10-07
dc.identifierGUIRADO, Lorene. Comparação do desempenho de Modelos Lineares Generalizados (MLG) e Modelos Aditivos Generalizados (MAG) na predição de dados financeiros em credit score. 2010. Dissertação (Mestrado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2010. Disponível em: https://repositorio.ufscar.br/handle/ufscar/10158.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/10158
dc.description.abstractThis study aimed to present and compare the performance of two different methodologies for statistical modeling of financial data with dichotomous response, specifically exemplified by models of credit score as well as methodologies for validation and performance analysis of these models. One of the measures used in this analysis is the lift, often used in marketing, but little used in the financial area, this measure is also used as a descriptive technique for categorizing variables. The techniques presented here are the Generalized Linear Models (GLM), the most usual method, and Generalized Additive Models (GAM), unusual in finance because it is a semi-parametric or nonparametric model, generating even some difficulty in interpretation because it does not present parameters. The predictive capabilities of the two techniques are compared in an application on real data and in a simulation study.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Estatística - PPGEs
dc.publisherCâmpus São Carlos
dc.rightsAcesso aberto
dc.subjectDados binários
dc.subjectModelos lineares generalizados
dc.subjectModelos aditivos generalizados
dc.subjectLift
dc.subjectCredit Score
dc.titleComparação do desempenho de Modelos Lineares Generalizados (MLG) e Modelos Aditivos Generalizados (MAG) na predição de dados financeiros em credit score
dc.typeTesis


Este ítem pertenece a la siguiente institución