dc.contributorCaseli, Helena de Medeiros
dc.contributorhttp://lattes.cnpq.br/6608582057810385
dc.contributorKepler, Fabio Natanael
dc.contributorhttp://lattes.cnpq.br/2278269345182335
dc.contributorhttp://lattes.cnpq.br/8542827534739117
dc.creatorCosta, Pablo Botton da
dc.date.accessioned2017-08-23T18:26:28Z
dc.date.available2017-08-23T18:26:28Z
dc.date.created2017-08-23T18:26:28Z
dc.date.issued2017-01-24
dc.identifierCOSTA, Pablo Botton da. Um analisador sintático neural multilíngue baseado em transições. 2017. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9065.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/9065
dc.description.abstractA dependency parser consists in inducing a model that is capable of extracting the right dependency tree from an input natural language sentence. Nowadays, the multilingual techniques are being used more and more in Natural Language Processing (NLP) (BROWN et al., 1995; COHEN; DAS; SMITH, 2011), especially in the dependency parsing task. Intuitively, a multilingual parser can be seen as vector of different parsers, in which each one is individually trained on one language. However, this approach can be a really pain in the neck in terms of processing time and resources. As an alternative, many parsing techniques have been developed in order to solve this problem (MCDONALD; PETROV; HALL, 2011; TACKSTROM; MCDONALD; USZKOREIT, 2012; TITOV; HENDERSON, 2007) but all of them depends on word alignment (TACKSTROM; MCDONALD; USZKOREIT, 2012) or word clustering, which increases the complexity since it is difficult to induce alignments between words and syntactic resources (TSARFATY et al., 2013; BOHNET et al., 2013a). A simple solution proposed recently (NIVRE et al., 2016a) uses an universal annotated corpus in order to reduce the complexity associated with the construction of a multilingual parser. In this context, this work presents an universal model for dependency parsing: the NNParser. Our model is a modification of Chen e Manning (2014) with a more greedy and accurate model to capture distributional representations (MIKOLOV et al., 2011). The NNparser reached 93.08% UAS in English Penn Treebank (WSJ) and better results than the state of the art Stack LSTM parser for Portuguese (87.93% × 86.2% LAS) and Spanish (86.95% × 85.7% LAS) on the universal dependencies corpus.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisherCâmpus São Carlos
dc.rightsAcesso aberto
dc.subjectProcessamento de linguagem natural
dc.subjectAnálise sintática de dependência
dc.subjectAnálise sintática baseada em transições
dc.subjectProcessamento multilíngue
dc.subjectAprendizado neural
dc.subjectRepresentação distribuída
dc.subjectDependency parser
dc.subjectNatural language processing
dc.subjectMultilingual parsing
dc.subjectNeural networks
dc.subjectWord embeddings
dc.titleUm analisador sintático neural multilíngue baseado em transições
dc.typeTesis


Este ítem pertenece a la siguiente institución