dc.contributorKato, Edilson Reis Rodrigues
dc.contributorhttp://lattes.cnpq.br/8517698122676145
dc.contributorhttp://lattes.cnpq.br/3838425291676134
dc.creatorSanches, Rafael Francisco Viana
dc.date.accessioned2017-08-23T12:45:16Z
dc.date.available2017-08-23T12:45:16Z
dc.date.created2017-08-23T12:45:16Z
dc.date.issued2017-02-14
dc.identifierSANCHES, Rafael Francisco Viana. Algoritmo de enxame de abelhas para resolução do problema da programação da produção Job Shop flexível multiobjetivo. 2017. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9055.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/9055
dc.description.abstractThe production scheduling activity is considered as one of the most complex activities in production management. This activity is part of the class of NP-Hard problems found in the area of computer science, that is, those problems that can not be solved deterministically in polynomial time. In addition, the complexity of this activity may increase according to the constraints imposed on each programming system/problem. In this research, the problem of programming of production the Flexible Job Shop (JSF) is studied. This problem is considered an extension of the Job Shop programming problem. In JSF, a group of jobs (i.e., products, items, part of an item) formed by a set of operations and each operation must be programmed by a resource (i.e., machine) that belongs to a group of resources that have the same functional characteristics (e.g., cut, sanding, painting). This problem is characterized in two sub-problems being routing and sequencing activity. Routing involves determining which resource will process a given operation. Sequencing is the order in which each operation will be processed on a resource. Through established programming, the objective of this research is to optimize performance multicriteria: the makespan (i.e., time spent to produce a set of jobs), processing time spent on the resource that worked by more time and total production time. In order to reach the objectives mentioned above, a hybrid swarm approach is proposed in this research. In this approach, two auxiliary methods are used to treat the abovementioned sub-problems: genetic operator of mutation to perform the routing activity and for the sequencing activity, an adaptive method of neighborhood structures is proposed. In order to deal with the multiobjectivity of the problem, we propose the Pareto dominance method. Experimental results obtained through commonly used benchmarks prove the efficacy and superiority of the proposed approach when compared to other approaches also applied to the problem studied.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisherCâmpus São Carlos
dc.rightsAcesso aberto
dc.subjectProgramação da produção
dc.subjectMulticritério
dc.subjectEnxame de abelhas
dc.subjectMutação
dc.subjectEstruturas de vizinhança
dc.subjectDominância de Pareto
dc.subjectProduction scheduling
dc.subjectMulticriteria
dc.subjectBee swarm
dc.subjectMakespan
dc.subjectMutation
dc.subjectNeighborhood structures
dc.subjectPareto dominance
dc.titleAlgoritmo de enxame de abelhas para resolução do problema da programação da produção Job Shop flexível multiobjetivo
dc.typeTesis


Este ítem pertenece a la siguiente institución