Tesis
Inferência em modelos de mistura via algoritmo EM estocástico modificado
Fecha
2017-06-02Registro en:
Autor
Assis, Raul Caram de
Institución
Resumen
We present the topics and theory of Mixture Models in a context of maximum likelihood and Bayesian inferece. We approach clustering methods in both contexts, with emphasis on the stochastic EM algorithm and the Dirichlet Process Mixture Model. We propose a new method, a modified stochastic EM algorithm, which can be used to estimate the parameters of a mixture model and the number of components.