dc.contributorCamargo, Heloisa de Arruda
dc.contributorhttp://lattes.cnpq.br/0487231065057783
dc.contributorhttp://lattes.cnpq.br/8477126045991210
dc.creatorLopes, Mariana Vieira Ribeiro
dc.date.accessioned2017-08-08T20:31:24Z
dc.date.available2017-08-08T20:31:24Z
dc.date.created2017-08-08T20:31:24Z
dc.date.issued2016-03-03
dc.identifierLOPES, Mariana Vieira Ribeiro. Tratamento de imprecisão na geração de árvores de decisão. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8954.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/8954
dc.description.abstractInductive Decision Trees (DT) are mechanisms based on the symbolic paradigm of machine learning which main characteristics are easy interpretability and low computational cost. Though they are widely used, the DTs can represent problems with just discrete or continuous variables. However, for some problems, the variables are not well represented in this way. In order to improve DTs, the Fuzzy Decision Trees (FDT) were developed, adding the ability to deal with fuzzy variables to the Inductive Decision Trees, making them capable to deal with imprecise knowledge. In this text, it is presented a new algorithm for fuzzy decision trees induction. Its fuzification method is applied during the induction and it is inspired by the C4.5’s partitioning method for continuous attributes. The proposed algorithm was tested with 20 datasets from UCI repository (LICHMAN, 2013). It was compared with other three algorithms that implement different solutions to classification problem: C4.5, which induces an Inductive Decision Tree, FURIA, that induces a Rule-based Fuzzy System and FuzzyDT, which induces a Fuzzy Decision Tree where the fuzification is done before tree’s induction is performed. The results are presented in Chapter 4.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisherCâmpus São Carlos
dc.rightsAcesso aberto
dc.subjectÁrvore de decisão indutiva
dc.subjectÁrvore de decisão Fuzzy
dc.subjectProblemas de classificação
dc.subjectSistemas Fuzzy baseados em regras
dc.subjectSistemas Fuzzy de classificação
dc.subjectInductive decision tree
dc.subjectFuzzy decision tree
dc.subjectClassification problems
dc.subjectRule-based Fuzzy systems
dc.subjectFuzzy classification systems
dc.titleTratamento de imprecisão na geração de árvores de decisão
dc.typeTesis


Este ítem pertenece a la siguiente institución