dc.contributorFaceli, Katti
dc.contributorhttp://lattes.cnpq.br/4451540730749377
dc.contributorhttp://lattes.cnpq.br/6329808970349082
dc.creatorAlmeida, João Luís Baptista de
dc.date.accessioned2017-06-01T14:49:58Z
dc.date.available2017-06-01T14:49:58Z
dc.date.created2017-06-01T14:49:58Z
dc.date.issued2016-12-12
dc.identifierALMEIDA, João Luís Baptista de. ASAClu: selecionando clusters diversos e relevantes. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, Sorocaba, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8805.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/8805
dc.description.abstractNo clustering algorithm is guaranteed to find actual groups in any dataset. To deal with this problem, many techniques apply various clustering algorithms to a dataset, generating a set of partitions and assessing them to select the most appropriated ones. The problem in selecting partitions is that redundancy can be seen inside partitions, as the same cluster can appear in different partitions. Also, one can underestimate the quality of a cluster, assessing only the quality of a partition. For these reasons, a new selection strategy named ASAClu is aimed at selecting a relevant and diverse subset of clusters instead of partitions, given an initial collection.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Ciência da Computação - PPGCC-So
dc.publisherCâmpus Sorocaba
dc.rightsAcesso aberto
dc.subjectCluster (Sistema de computador)
dc.subjectAnálise por agrupamento
dc.subjectCluster analysis
dc.subjectClustering
dc.titleASAClu: selecionando clusters diversos e relevantes
dc.typeTesis


Este ítem pertenece a la siguiente institución