Tesis
Modeling based on a reparameterized Birnbaum-Saunders distribution for analysis of survival data
Fecha
2017-01-09Registro en:
Autor
Leão, Jeremias da Silva
Institución
Resumen
In this thesis we propose models based on a reparameterized Birnbaum-Saunder (BS) distribution
introduced by Santos-Neto et al. (2012) and Santos-Neto et al. (2014), to analyze survival data.
Initially we introduce the Birnbaum-Saunders frailty model where we analyze the cases (i) with
(ii) without covariates. Survival models with frailty are used when further information is nonavailable
to explain the occurrence time of a medical event. The random effect is the “frailty”,
which is introduced on the baseline hazard rate to control the unobservable heterogeneity of
the patients. We use the maximum likelihood method to estimate the model parameters. We
evaluate the performance of the estimators under different percentage of censured observations
by a Monte Carlo study. Furthermore, we introduce a Birnbaum-Saunders regression frailty
model where the maximum likelihood estimation of the model parameters with censored data
as well as influence diagnostics for the new regression model are investigated. In the following
we propose a cure rate Birnbaum-Saunders frailty model. An important advantage of this
proposed model is the possibility to jointly consider the heterogeneity among patients by their
frailties and the presence of a cured fraction of them. We consider likelihood-based methods to
estimate the model parameters and to derive influence diagnostics for the model. In addition,
we introduce a bivariate Birnbaum-Saunders distribution based on a parameterization of the
Birnbaum-Saunders which has the mean as one of its parameters. We discuss the maximum
likelihood estimation of the model parameters and show that these estimators can be obtained
by solving non-linear equations. We then derive a regression model based on the proposed
bivariate Birnbaum-Saunders distribution, which permits us to model data in their original
scale. A simulation study is carried out to evaluate the performance of the maximum likelihood
estimators. Finally, examples with real-data are performed to illustrate all the models proposed
here.