dc.contributorMilan, Luis Aparecido
dc.contributorhttp://lattes.cnpq.br/7435391829973844
dc.contributorhttp://lattes.cnpq.br/8352484284929824
dc.creatorZuanetti, Daiane Aparecida
dc.date.accessioned2017-01-17T11:47:50Z
dc.date.available2017-01-17T11:47:50Z
dc.date.created2017-01-17T11:47:50Z
dc.date.issued2016-12-14
dc.identifierZUANETTI, Daiane Aparecida. Efficient bayesian methods for mixture models with genetic applications. 2016. Tese (Doutorado em Estatística) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/8426.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/8426
dc.description.abstractWe propose Bayesian methods for selecting and estimating di erent types of mixture models which are widely used in Genetics and Molecular Biology. We speci cally propose data-driven selection and estimation methods for a generalized mixture model, which accommodates the usual (independent) and the rst-order (dependent) models in one framework, and QTL (quantitative trait locus) mapping models for independent and pedigree data. For clustering genes through a mixture model, we propose three nonparametric Bayesian methods: a marginal nested Dirichlet process (NDP), which is able to cluster distributions and, a predictive recursion clustering scheme (PRC) and a subset nonparametric Bayesian (SNOB) clustering algorithm for clustering big data. We analyze and compare the performance of the proposed methods and traditional procedures of selection, estimation and clustering in simulated and real data sets. The proposed methods are more exible, improve the convergence of the algorithms and provide more accurate estimates in many situations. In addition, we propose methods for predicting nonobservable QTLs genotypes and missing parents and improve the Mendelian probability of inheritance of nonfounder genotype using conditional independence structures. We also suggest applying diagnostic measures to check the goodness of t of QTL mapping models.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma Interinstitucional de Pós-Graduação em Estatística - PIPGEs
dc.publisherCâmpus São Carlos
dc.rightsAcesso aberto
dc.subjectMixture models
dc.subjectData-driven bayesian methods
dc.subjectNonparametric bayesian methods
dc.subjectQTL mapping
dc.subjectClustering distributions
dc.titleEfficient bayesian methods for mixture models with genetic applications
dc.typeTesis


Este ítem pertenece a la siguiente institución