dc.contributorTalpo, Humberto Luiz
dc.contributorhttp://lattes.cnpq.br/1674689444257254
dc.contributorhttp://lattes.cnpq.br/2387898216530288
dc.creatorNaves, Fernando Augusto
dc.date.accessioned2016-10-17T19:06:01Z
dc.date.available2016-10-17T19:06:01Z
dc.date.created2016-10-17T19:06:01Z
dc.date.issued2016-02-29
dc.identifierNAVES, Fernando Augusto. PI-equivalência em álgebras graduadas simples. 2016. Dissertação (Mestrado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7911.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/7911
dc.description.abstractThis work aims to give a description, under certain hypothesis, of the graded simple algebras and prove that they are determined by their graded identities. For this, we study the papers [3] and [19]. More precisely we will show the following: Let G be a group, F an algebraically closed eld, and R = L g2G Rg a finite dimensional G-graded F-algebra such that the order of each finite subgroup of G is invertible in F. Then R is a G-graded simple algebra if and only if R is isomorphic, as graded algebra, to the tensor product C = Mn(F) F [H], where H is a nite subgroup of G, is a 2-cocycle in H, Mn(F) has an elementary G-grading, F [H] has a canonical grading and C has an induced G-grading by the tensor product. Based on this result, admitting the same assumptions and adding that G is an abelian group, we prove that two graded simple algebras satisfy the same graded identities if and only if they are isomorphic as graded algebras.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Matemática - PPGM
dc.publisherCâmpus São Carlos
dc.rightsAcesso aberto
dc.subjectPI- álgebras
dc.subjectG-graduações
dc.subjectIdentidades polinomiais
dc.subjectIdentidades graduadas
dc.subjectÁlgebras graduadas simples
dc.subjectG-gradings
dc.subjectPolynomial identities
dc.subjectGraded identities
dc.subjectGraded simple algebras
dc.titlePI-equivalência em álgebras graduadas simples
dc.typeTesis


Este ítem pertenece a la siguiente institución