dc.contributorKato, Edilson Reis Rodrigues
dc.contributorhttp://lattes.cnpq.br/8517698122676145
dc.contributorhttp://lattes.cnpq.br/0522306511690493
dc.creatorLima, Denis Pereira de
dc.date.accessioned2016-10-14T14:18:52Z
dc.date.available2016-10-14T14:18:52Z
dc.date.created2016-10-14T14:18:52Z
dc.date.issued2016-03-04
dc.identifierLIMA, Denis Pereira de. Posicionamento em ambientes não estruturados e treinamento de redes neurais utilizando filtros de Kalman. 2016. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7874.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/7874
dc.description.abstractKalman filters are rooted in the technical literature, as a way of predicting new states in nonlinear systems providing a recursive solution to the problem of linear optimal filtering. Therefore, 56 years after its discovery, many modifications have been proposed in order to obtain better accuracy and speed. Some of these changes are used in this work; these being the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Kalman Filter Cubature (CKF). This work , divided into three distinct parts: Implementation / Comparative analysis of prediction of Kalman filters in complex systems (Series), qualitative analysis of the possible uses of the Kalman filter variants for neural network training and position and velocity determination a displaced object on a simulated plane with some trajectories Having these analyzes key role in fostering the studies cited in the scientific literature , proving the possibility of such algorithms and methods are used for positioning in unstructured environments
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisherCâmpus São Carlos
dc.rightsAcesso aberto
dc.subjectFiltros de Kalman adaptativos
dc.subjectSéries caóticas
dc.subjectUnscented Kalman Filter
dc.subjectRedes neurais
dc.subjectFiltro de Kalman estendido
dc.subjectChaotic series
dc.subjectUnscented kalman filter
dc.subjectNeura networks
dc.subjectExtended kalman filter
dc.subjectState estimation
dc.subjectUnstructured environment
dc.titlePosicionamento em ambientes não estruturados e treinamento de redes neurais utilizando filtros de Kalman
dc.typeTesis


Este ítem pertenece a la siguiente institución