dc.contributor | Hounie, Jorge Guillermo | |
dc.contributor | http://lattes.cnpq.br/7302904386484949 | |
dc.contributor | http://lattes.cnpq.br/3928582698221236 | |
dc.creator | Menis, Alexandra Cristina | |
dc.date.accessioned | 2016-09-27T19:50:54Z | |
dc.date.available | 2016-09-27T19:50:54Z | |
dc.date.created | 2016-09-27T19:50:54Z | |
dc.date.issued | 2015-06-11 | |
dc.identifier | MENIS, Alexandra Cristina. Representação de soluções homogêneas contínuas de campos vetoriais no plano. 2015. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7525. | |
dc.identifier | https://repositorio.ufscar.br/handle/ufscar/7525 | |
dc.description.abstract | In this work we study conditions for the validity of the analogue of Mergelyan’s
theorem for continuous solutions of a type of locally integrable vector field.
On a domain in the plane, we consider a vector field L that has a first
integral on of the form Z(x, t) = x + i'(x, t), where '(x, t) is a smooth, realvalued
function. Given a continuous solution u of Lu = 0 on
, our first objective was to find conditions on
and Z for the validity of the factorization
u = U Z,
where U 2 C0(Z ()) \ H(int{Z ()}).
We will next study this factorization on the closure of . We assume that
u 2 C0( ) and that the boundary of is real analytic, then we show in which
cases the condition Z(p1) = Z(p2) implies that u(p1) = u(p2), for p1, p2 2 . The
cases are divided according to the geometry of the boundary in the points p1 and
p2. When is a compact set and u = U Z on , we obtain that u is uniformly
approximated by polynomials of Z on . | |
dc.language | por | |
dc.publisher | Universidade Federal de São Carlos | |
dc.publisher | UFSCar | |
dc.publisher | Programa de Pós-Graduação em Matemática - PPGM | |
dc.publisher | Câmpus São Carlos | |
dc.rights | Acesso aberto | |
dc.subject | Equações diferenciais parciais | |
dc.subject | Campos vetoriais | |
dc.subject | Teorema de Baouendi-Treves | |
dc.title | Representação de soluções homogêneas contínuas de campos vetoriais no plano | |
dc.type | Tesis | |