dc.contributorHounie, Jorge Guillermo
dc.contributorhttp://lattes.cnpq.br/7302904386484949
dc.contributorhttp://lattes.cnpq.br/3928582698221236
dc.creatorMenis, Alexandra Cristina
dc.date.accessioned2016-09-27T19:50:54Z
dc.date.available2016-09-27T19:50:54Z
dc.date.created2016-09-27T19:50:54Z
dc.date.issued2015-06-11
dc.identifierMENIS, Alexandra Cristina. Representação de soluções homogêneas contínuas de campos vetoriais no plano. 2015. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7525.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/7525
dc.description.abstractIn this work we study conditions for the validity of the analogue of Mergelyan’s theorem for continuous solutions of a type of locally integrable vector field. On a domain in the plane, we consider a vector field L that has a first integral on of the form Z(x, t) = x + i'(x, t), where '(x, t) is a smooth, realvalued function. Given a continuous solution u of Lu = 0 on , our first objective was to find conditions on and Z for the validity of the factorization u = U Z, where U 2 C0(Z ()) \ H(int{Z ()}). We will next study this factorization on the closure of . We assume that u 2 C0( ) and that the boundary of is real analytic, then we show in which cases the condition Z(p1) = Z(p2) implies that u(p1) = u(p2), for p1, p2 2 . The cases are divided according to the geometry of the boundary in the points p1 and p2. When is a compact set and u = U Z on , we obtain that u is uniformly approximated by polynomials of Z on .
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Matemática - PPGM
dc.publisherCâmpus São Carlos
dc.rightsAcesso aberto
dc.subjectEquações diferenciais parciais
dc.subjectCampos vetoriais
dc.subjectTeorema de Baouendi-Treves
dc.titleRepresentação de soluções homogêneas contínuas de campos vetoriais no plano
dc.typeTesis


Este ítem pertenece a la siguiente institución