dc.contributorOliveira, César Rogério de
dc.contributorhttp://lattes.cnpq.br/5485204156806697
dc.contributorCarvalho, Silas Luiz de
dc.contributorhttp://lattes.cnpq.br/1589518857002416
dc.contributorhttp://lattes.cnpq.br/9750908467927926
dc.creatorBazão, Vanderléa Rodrigues
dc.date.accessioned2016-10-10T14:48:08Z
dc.date.available2016-10-10T14:48:08Z
dc.date.created2016-10-10T14:48:08Z
dc.date.issued2016-02-16
dc.identifierBAZÃO, Vanderléa Rodrigues. Subordinação fractal para operadores de Schrödinger unidimensionais. 2016. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2016. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7737.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/7737
dc.description.abstractWe study fractal subordinacy theory for one-dimensional Schrödinger operators. First, we review results on Hausdorff subordinacy for discrete one-dimensional Schrödinger operators in order to analyze the differences and similarities of these results with respect to the packing setting. By using methods of packing subordinacy, we have obtained pac- king continuity properties of spectral measures of such operators. Then, we apply these methods to Sturmian operators with rotation number of quasibounded density to show that they have purely α-packing continuous spectrum. Moreover, we show that spectral fractal dimensional properties of discrete Schrödinger operators with Sturmian potentials of bounded density and with sparse potentials are preserved under suitable polynomial decaying perturbations, when the spectrum of these perturbed operators have some singular continuous component. Finally, we performed an introductory study of fractal subordinacy for continuous one-dimensional Schrödinger operators defined in bounded intervals.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Matemática - PPGM
dc.publisherCâmpus São Carlos
dc.rightsAcesso aberto
dc.subjectFísica matemática
dc.subjectTeoria espectral
dc.subjectOperadores de schrodinger
dc.subjectSubordinação fractal
dc.subjectDimensão Hausdorff
dc.titleSubordinação fractal para operadores de Schrödinger unidimensionais
dc.typeTesis


Este ítem pertenece a la siguiente institución