dc.contributorHoepfner, Gustavo
dc.contributorhttp://lattes.cnpq.br/7742503790793940
dc.contributorhttp://lattes.cnpq.br/9839649733570632
dc.creatorSouza, Osmar do Nascimento
dc.date.accessioned2014-08-18
dc.date.accessioned2016-06-02T20:28:30Z
dc.date.available2014-08-18
dc.date.available2016-06-02T20:28:30Z
dc.date.created2014-08-18
dc.date.created2016-06-02T20:28:30Z
dc.date.issued2014-03-13
dc.identifierSOUZA, Osmar do Nascimento. Espaços de Hardy e compacidade compensada. 2014. 122 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2014.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/5906
dc.description.abstractThis work is divided into two parts. In the first part, our goal is to present the theory of Hardy Spaces Hp(Rn), which coincides with the Lebesgue space Lp(Rn) for p > 1, is strictly contained in Lp(Rn) if p = 1, and is a space of distributions when 0 < p < 1. When 0 < p ^ 1, the Hardy spaces offers a better treatment involving harmonic analysis than the Lp spaces. Among other results, we prove the maximal characterization theorem of Hp, which gives equivalent definitions of Hp, based on different maximal functions. We will proof the atomic decom¬position theorem for Hp, which allow decompose any distribution in Hp to be written as a sum of Hp-atoms (measurable functions that satisfy certain properties). In this step, we use the strongly the of Whitney decomposition and generalized Calderon-Zygmund decomposition. In the second part, as a application, we will prove that nonlinear quantities (such as the Jacobian, divergent and rotational defined in Rn) identied by the compensated compactness theory belong, under natural conditions, the Hardy spaces. To this end, in addition to the results seen in the first part, will use the results as Sobolev immersions theorems ans the inequality Sobolev-Poincare. Furthermore, we will use the tings and results related to the context of differential forms.
dc.publisherUniversidade Federal de São Carlos
dc.publisherBR
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Matemática - PPGM
dc.rightsAcesso Aberto
dc.subjectAnálise harmônica
dc.subjectHardy, Espaços de
dc.subjectCompacidade compensada
dc.subjectCaracterizaçao maximal de Hp
dc.subjectDecomposiçõo atômica de Hp
dc.subjectHarmonic analysis
dc.subjectHardy spaces Hp
dc.subjectMaximal caracterization of Hp
dc.subjectAtomic decomposition for Hp
dc.subjectCompensated compactness
dc.titleEspaços de Hardy e compacidade compensada
dc.typeTesis


Este ítem pertenece a la siguiente institución