dc.contributorVillagra, Guillermo Antonio Lobos
dc.contributorhttp://lattes.cnpq.br/6962956853017869
dc.contributorhttp://lattes.cnpq.br/2305959565667431
dc.creatorChion Aguirre, Sergio Julio
dc.date.accessioned2013-12-06
dc.date.accessioned2016-06-02T20:28:28Z
dc.date.available2013-12-06
dc.date.available2016-06-02T20:28:28Z
dc.date.created2013-12-06
dc.date.created2016-06-02T20:28:28Z
dc.date.issued2013-08-30
dc.identifierAGUIRRE, Sergio Julio Chion. Teorema de holonomia normal. 2013. 74 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2013.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/5896
dc.description.abstractIn this work we will introduce the concept of normal holonomy and restricted normal holonomy of a riemannian submanifold. They are subgroups of the orthogonal matrices that are realized from parallel translating normal vectors, along loops and null-homotopic loops respectively, using the normal connection. We will proof that the restricted normal holonomy is a Lie subgroup of the orthogonal matrices. With the aid of the Ambrose-Singer Theorem, which relates the concept of curvature with restricted normal holonomy, we will prove the Normal Holonomy Theorem which is the extrinsic analogue of the algebraic de Rham-Berger s Theorem.
dc.publisherUniversidade Federal de São Carlos
dc.publisherBR
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Matemática - PPGM
dc.rightsAcesso Aberto
dc.subjectGeometria
dc.subjectHolonomia normal
dc.subjectSubvariedades
dc.subjectTransporte paralelo
dc.titleTeorema de holonomia normal
dc.typeTesis


Este ítem pertenece a la siguiente institución