dc.contributorFigueiredo Junior, Ruy Tojeiro de
dc.contributorhttp://lattes.cnpq.br/9930999514347198
dc.contributorhttp://lattes.cnpq.br/5772735504029374
dc.creatorSantos, Maria Rosilene Barroso dos
dc.date.accessioned2011-05-16
dc.date.accessioned2016-06-02T20:28:26Z
dc.date.available2011-05-16
dc.date.available2016-06-02T20:28:26Z
dc.date.created2011-05-16
dc.date.created2016-06-02T20:28:26Z
dc.date.issued2011-03-04
dc.identifierSANTOS, Maria Rosilene Barroso dos. A Equação de Codazzi em superfícies. 2011. 92 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2011.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/5875
dc.description.abstractIn this work, based on the article The Codazzi Equation for Surfaces by Juan A. Aledo, José M. Espinar and José A. Gálvez [8], we describe some applications of an abstract theory for the Codazzi equation on surfaces. This theory deals with abstract pairs of quadratic forms on a surface, in particular the so-called Codazzi pairs, for which the Codazzi equation is satisfied. Among the applications, we give a proof of an abstract version of a classical theorem due to Hopf on immersed spheres in Euclidean space R3 with constant mean curvature. Other applications are proofs of Liebmann s theorem on complete surfaces with constant Gaussian curvature in R3 and of Grove s theorem on the rigidity of ovaloids. We also study the existence of holomorphic quadratic differentials associated with Codazzi pairs. This is used, in particular, in the classification of complete embedded elliptic special Weingarten surfaces of non-minimal type in R3 whose Gaussian curvature does not change sign.
dc.publisherUniversidade Federal de São Carlos
dc.publisherBR
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Matemática - PPGM
dc.rightsAcesso Aberto
dc.subjectGeometria
dc.subjectCodazzi, Equação de
dc.subjectPar de Codazzi
dc.subjectCurvaturas médias e gaussiana
dc.subjectWeingarten, Superfícies de
dc.subjectHopf, Diferencial de
dc.subjectCodazzi equation
dc.subjectCodazzi pair
dc.subjectGaussian and mean curvatures
dc.subjectWeingarten surface
dc.subjectHopf differential
dc.titleA Equação de Codazzi em superfícies
dc.typeTesis


Este ítem pertenece a la siguiente institución