dc.contributorFigueira, Fábio Gomes
dc.contributorhttp://lattes.cnpq.br/4114509001653395
dc.contributorhttp://lattes.cnpq.br/7375801203443744
dc.creatorRibeiro Júnior, José Roberto
dc.date.accessioned2011-09-26
dc.date.accessioned2016-06-02T20:28:25Z
dc.date.available2011-09-26
dc.date.available2016-06-02T20:28:25Z
dc.date.created2011-09-26
dc.date.created2016-06-02T20:28:25Z
dc.date.issued2011-02-25
dc.identifierRIBEIRO JÚNIOR, José Roberto. Uma nota sobre o teorema de Borsuk-Ulam. 2011. 79 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2011.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/5873
dc.description.abstractThe main objective of this work is to prove that the map B defined on F and taking values in B, where F is the set of all continuous functions from Sn to Rn and B is the set of all nonempty closed subsets of Sn, invariant under the antipodal map, which assign to each f 2 F the set fx 2 Sn; f(x) = f(��x)g, is continuous when the topology of F is the topology induced by the usual metric, and the topology of B is the upper semi-finite topology. Considering in F the topology induced by the usual metric, we will have that the finest topology in B such that the map B is continuous is the upper semi-finite topology.
dc.publisherUniversidade Federal de São Carlos
dc.publisherBR
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Matemática - PPGM
dc.rightsAcesso Aberto
dc.subjectTopologia algébrica
dc.subjectTeorema de Borsuk-Ulam
dc.titleUma nota sobre o teorema de Borsuk-Ulam
dc.typeTesis


Este ítem pertenece a la siguiente institución