dc.contributorVendrúscolo, Daniel
dc.contributorhttp://lattes.cnpq.br/8602232587914830
dc.contributorhttp://lattes.cnpq.br/0062492285546913
dc.creatorSouza, Taciana Oliveira
dc.date.accessioned2009-07-21
dc.date.accessioned2016-06-02T20:28:24Z
dc.date.available2009-07-21
dc.date.available2016-06-02T20:28:24Z
dc.date.created2009-07-21
dc.date.created2016-06-02T20:28:24Z
dc.date.issued2009-02-27
dc.identifierSOUZA, Taciana Oliveira. Pontos fixos e os contra-exemplos de Jiang. 2009. 66 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/5860
dc.description.abstractThe aim of this work is construct the example, presented by Boju Jiang, of a self - map on a manifold with non - realizable Nielsen number. Firstly we will need to present the fixed point theory and some results about covering spaces, we do that in chapter 1. The chapter 2 is dedicated to obtain one presentation of the braid group of the Pants, that is the manifold used in Jiang´s example. This presentation is a very important tool and it will be used in the main results of this work. In the chapter 3 we construct the self - map. The aim of chapter 4 is to proof the following theorem: Let M be a compact, connected surface with negative Euler caracteristic. Then there exist a self - map on M such that all maps in its homotopy class have at least one fixed point, but its Nielsen number is zero . This result shows that even for the manifold without bondary it is possible to find self - maps with non - realizable Nielsen number. In chapter 3 e 4 we use Braid Group to construct such counter - examples, in the chapter 5 (the last one) we related some equation in braid group with the number of fixed points of a self - map on a compact connected surface.
dc.publisherUniversidade Federal de São Carlos
dc.publisherBR
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Matemática - PPGM
dc.rightsAcesso Aberto
dc.subjectTopologia algébrica
dc.subjectPontos fixos
dc.subjectGrupo de tranças
dc.titlePontos fixos e os contra-exemplos de Jiang
dc.typeTesis


Este ítem pertenece a la siguiente institución