dc.contributor | Hounie, Jorge Guillermo | |
dc.contributor | http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4783994Z2 | |
dc.contributor | http://lattes.cnpq.br/2231598823550786 | |
dc.creator | Liboni Filho, Paulo Antonio | |
dc.date.accessioned | 2009-07-14 | |
dc.date.accessioned | 2016-06-02T20:28:23Z | |
dc.date.available | 2009-07-14 | |
dc.date.available | 2016-06-02T20:28:23Z | |
dc.date.created | 2009-07-14 | |
dc.date.created | 2016-06-02T20:28:23Z | |
dc.date.issued | 2009-03-06 | |
dc.identifier | LIBONI FILHO, Paulo Antonio. A fórmula de aproximação de Baouendi -Treves. 2009. 111 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009. | |
dc.identifier | https://repositorio.ufscar.br/handle/ufscar/5858 | |
dc.description.abstract | Let be a N-dimensional smooth manifold. Consider a locally integrable structure L of CT with fiber dimension 1 ≤ n < N and set m = N − n. We say that L is locally integrable if, for every p ∈ , there is a neiborhood Up and m smooth functions
Zj : U −→ C, 1 ≤ j ≤ m such that 1. Zj is anihilated by every local section of L; 2. dZ1(p) ∧ . . . ∧ dZm(p) 6= 0. The main result in this text is the Baouendi-Treves Approximation Theorem, that states that every distribution solution u of the sections of L is locally the limit of a sequence of smooth solutions of the form Pk ◦ Z, where Z = (Z1, . . . ,Zm) and Pk is a m-variable polynomial. | |
dc.publisher | Universidade Federal de São Carlos | |
dc.publisher | BR | |
dc.publisher | UFSCar | |
dc.publisher | Programa de Pós-Graduação em Matemática - PPGM | |
dc.rights | Acesso Aberto | |
dc.subject | Equações diferenciais parciais | |
dc.subject | Variedades diferenciáveis | |
dc.subject | Teoria das distribuições | |
dc.subject | Radon, Medidas de | |
dc.subject | Teorema de aproximação de Baouendi - Treves | |
dc.title | A fórmula de aproximação de Baouendi -Treves | |
dc.type | Tesis | |