Tesis
Estabilidade em equações de reação e difusão : interação entre difusibilidade e geometria em superfícies de revolução e um problema singularmente perturbado no caso de intersecção das raizes da equação degenerada
Fecha
2013-03-07Registro en:
SÔNEGO, Maicon. Estabilidade em equações de reação e difusão : interação entre difusibilidade e geometria em superfícies de revolução e um problema singularmente perturbado no caso de intersecção das raizes da equação degenerada. 2013. 95 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2013.
Autor
Sônego, Maicon
Institución
Resumen
In this work we study two distinct problems. The first is a parabolic problem with variable diffusivity on surfaces of revolution. The objective is to find mechanisms of interaction between the diffusivity function and the geometry of the domain ensuring the existence of stationary stable nonconstant solution as well as non-existence. The second is a problem of reaction and diffusion singularly perturbed in the case of intersecting roots of the degenerate equation. We prove the existence and geometric profile of four families of stationary stable non-constant solutions to the parabolic equation. In both problems the main tools used are T-convergence theory and techniques of variational calculus.