dc.contributorLouzada Neto, Francisco
dc.contributorhttp://lattes.cnpq.br/0994050156415890
dc.contributorhttp://lattes.cnpq.br/1004268445260936
dc.creatorPellegrini, Tiago Ribeiro
dc.date.accessioned2012-12-20
dc.date.accessioned2016-06-02T20:06:07Z
dc.date.available2012-12-20
dc.date.available2016-06-02T20:06:07Z
dc.date.created2012-12-20
dc.date.created2016-06-02T20:06:07Z
dc.date.issued2012-12-06
dc.identifierPELLEGRINI, Tiago Ribeiro. Uma avaliação de métodos de previsão aplicados à grandes quantidades de séries temporais univariadas. 2012. 85 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2012.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/4563
dc.description.abstractTime series forecasting is probably one of the most primordial interests on economics and econometrics, and the literature on this subject is extremely vast. Due to technological growth in recent decades, large amounts of time series are daily collected; which, in a first moment, it requires forecasts according a fixed horizon; and on the second moment the forecasts must be constantly updated, making it impractical to human interaction. Towards this direction, computational procedures that are able to model and return accurate forecasts are required in several research areas. The search for models with high predictive power is an issue that has resulted in a large number of publications in the area of forecasting models. We propose to do a theorical and applied study of forecasting methods applied to multiple univariate time series. The study was based on exponential smoothing via state space approach, automatic ARIMA methods and the generalized Theta method. Each model and method were applied in large data bases of univariate time series and the forecast errors were evaluated. We also propose an approach to estimate the Theta coefficients, as well as a redefinition of the method regarding the number of decomposition lines, extrapolation methods and a combining approach.
dc.publisherUniversidade Federal de São Carlos
dc.publisherBR
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Estatística - PPGEs
dc.rightsAcesso Aberto
dc.subjectEstatística
dc.subjectAnálise de séries temporais
dc.subjectPrevisão
dc.subjectModelo Theta
dc.subjectModelos ARIMA
dc.subjectAlisamento exponencial
dc.subjectForecasting
dc.subjectTime series
dc.subjectTheta model
dc.subjectARIMA models
dc.subjectExponential smoothing
dc.titleUma avaliação de métodos de previsão aplicados à grandes quantidades de séries temporais univariadas
dc.typeTesis


Este ítem pertenece a la siguiente institución