dc.contributorAchcar, Jorge Alberto
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787720T8
dc.contributorhttp://lattes.cnpq.br/4186813257353303
dc.creatorObage, Simone Cristina
dc.date.accessioned2007-10-19
dc.date.accessioned2016-06-02T20:05:59Z
dc.date.available2007-10-19
dc.date.available2016-06-02T20:05:59Z
dc.date.created2007-10-19
dc.date.created2016-06-02T20:05:59Z
dc.date.issued2005-03-03
dc.identifierOBAGE, Simone Cristina. Uma análise bayesiana para dados composicionais.. 2005. 77 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2005.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/4505
dc.description.abstractCompositional data are given by vectors of positive numbers with sum equals to one. These kinds of data are common in many applications, as in geology, biology, economy among many others. In this paper, we introduce a Bayesian analysis for compositional data considering additive log-ratio (ALR) and Box-Cox transformations assuming a mul- tivariate normal distribution for correlated errors. These results generalize some existing Bayesian approaches assuming uncorrelated errors. We also consider the use of expo- nential power distributions for uncorrelated errors considering additive log-ratio (ALR) transformation. We illustrate the proposed methodology considering a real data set.
dc.publisherUniversidade Federal de São Carlos
dc.publisherBR
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Estatística - PPGEs
dc.rightsAcesso Aberto
dc.subjectEstatística - análise
dc.subjectInferência bayesiana
dc.subjectDados composicionais
dc.subjectCompositional data
dc.subjectCorrelated errors
dc.subjectBayesian Inference
dc.subjectMCMC
dc.titleUma análise bayesiana para dados composicionais.
dc.typeTesis


Este ítem pertenece a la siguiente institución