dc.contributorAchcar, Jorge Alberto
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787720T8
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=E8156773
dc.creatorPinho, Eloísa Moralles do
dc.date.accessioned2007-07-10
dc.date.accessioned2016-06-02T20:05:58Z
dc.date.available2007-07-10
dc.date.available2016-06-02T20:05:58Z
dc.date.created2007-07-10
dc.date.created2016-06-02T20:05:58Z
dc.date.issued2006-01-05
dc.identifierPINHO, Eloísa Moralles do. Estimação bayesiana para medidas de desempenho de testes diagnósticos.. 2006. 170 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2006.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/4500
dc.description.abstractIn the medical area, diagnostic tests are used to classify a patient as positive or negative with respect to a given disease. There are simple and more elaborate tests, each one with a speci9ed rate of misclassi9cation. To verify the accuracy of the medical tests, we could have comparisons with a "gold stantard", here is a test with no error. In many situations we could not have "gold standard", by ethical reasons or by chance that the individual is disease free or by high costs of the test. Joseph et al (1999) introduces a Bayesian approach that solves the lack of a gold standard, by using latent variables. In this work, we introduce this Bayesian methodology giving generalizations in the presence of covariates. A comparative study is made with the presence or not of gold standard to check the accuracy of the medical tests. Some diGerent proportions of patients without gold standard are considered in a simulation study. Numerical examples are considered using the proposed methodology. We conclude the dissertation assuming dependence among two or more tests.
dc.publisherUniversidade Federal de São Carlos
dc.publisherBR
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Estatística - PPGEs
dc.rightsAcesso Aberto
dc.subjectTeoria bayesiana de decisão estatística
dc.subjectEspecificidade a posteriori
dc.subjectSensibilidade a posteriori
dc.subjectMCMC
dc.subjectTestes diagnósticos
dc.titleEstimação bayesiana para medidas de desempenho de testes diagnósticos
dc.typeTesis


Este ítem pertenece a la siguiente institución